אינוולוציה (מתמטיקה)

מושג במתמטיקה

במתמטיקה, אינוולוציה היא פונקציה שהיא ההופכית של עצמה. כלומר, פונקציה חד-חד-ערכית בין שתי קבוצות , המקיימת את התכונה לכל .

הפעלת אינוולוציה פעמיים מחזירה את האיבר המקורי

דוגמה יסודית לאינוולוציה היא הפעולה של לקיחת משלים של קבוצה, או הפעולה של שלילת פסוק לוגי. בתחומים מסוימים במתמטיקה יש לאינוולוציה משמעות מסוימת בהקשר בה היא מוגדרת. בתורת החבורות, למשל, כל איבר מסדר 2 הוא אינוולוציה (למעשה איבר הוא אינוולוציה אם ורק אם ההומומורפיזם הוא אינוולוציה כפונקציה).

תכונות

עריכה

מן ההגדרה נובע שאינוולוציות הן תמיד פעולות אונאריות חד-חד-ערכיות. כלומר הן תמורות על תמונתן. תמורה היא אינוולוציה אם ורק אם בפירוק שלה למחזורים זרים מופיעים רק חילופים ונקודות שבת.

מספר האינוולוציות שמוגדרות על קבוצה סופית של n איברים נקרא מספר־טלפון ה-n-י[1]. מספרים אלו מקיימים את נוסחת הנסיגה:

 
 

הוכחה: נניח ללא הגבלת הכלליות שהקבוצה היא  . יש   אינוולוציות שבהן n נקודת שבת (כל אינוולוציה כזו מתאימה לאינוולוציה אחת על  ). יש   אינוולוציות שבהן n עובר ל-  (כל אינוולוציה כזו מתאימה לאינוולוציה אחת על  ). יש   ערכים אפשריים ל- .

מספרי־הטלפון הראשונים הם: 1, 1, 2, 4, 10, 26, 76, 232, 764, 2620, 9496.

דוגמאות

עריכה

קישורים חיצוניים

עריכה

הערות שוליים

עריכה