דינמיקה קוונטית
דינמיקה קוונטית היא תחום פיזיקלי העוסק בהתפתחות בזמן של מערכת קוונטית.
אופרטור ההתפתחות בזמןעריכה
האובייקט המרכזי בדינמיקה הקוונטית הוא אופרטור ההתפתחות בזמן. אופרטור זה מקדם (באופן שיפורט להלן) את המערכת הפיזיקלית ממצבה ההתחלתי הנתון בזמן כלשהו לזמן מאוחר יותר [1]. אופרטור זה מסומן לרוב ב- . כאשר מקצרים פעמים רבות את הסימון ל- . לאופרטור התכונות הבאות:
- אופרטור אוניטרי (כמו כל אופרטור המייצג טרנספורמציה פיזיקלית של מערכת שאמורה לשמר הסתברות).
- תכונת ההרכבה - (שני צעדי קידום מ ל ואז מ ל שקולים לצעד גדול מ ל )
- (רציפות - אם עבר זמן קצר המערכת משתנה רק מעט)
משוואת שרדינגרעריכה
על ידי שימוש בתכונות הנ"ל ניתן להראות כי אופרטור ההתפתחות בזמן מקיים את המשוואה הדיפרנציאלית הבאה, המכונה משוואת שרדינגר עבור אופרטור ההתפתחות בזמן:
פתרון משוואת שרדינגרעריכה
צורת הפתרון של משוואת שרדינגר עבור אופרטור ההתפתחות בזמן תלויה בצורת ההמילטוניאן.
- אם ההמילטוניאן לא תלוי בזמן :
- אם ההמילטוניאן תלוי בזמן אך חילופי עם עצמו בזמנים שונים :
- אם ההמילטוניאן תלוי בזמן ולא מתחלף עם עצמו בזמנים שונים - במקרה זה אופרטור ההתפתחות בזמן נתון על ידי טור דייסון[2]:
תמונותעריכה
לשאלה כיצד מקדם אופרטור ההתפתחות בזמן את המערכת אין תשובה חד משמעית. קיימות מספר אינטרפטציות המכונות תמונות באשר לפעולת אופרטור זה. תמונות אלו שקולות מבחינת הפיזיקה שהן מתארות[3] וניתן להשתמש בכל אחת מהן על פי הצורך והנוחות.
תמונת שרדינגרעריכה
התמונה האינטואיטיבית ביותר היא תמונת שרדינגר. בתמונה זו, אופרטור ההתפתחות בזמן פועל על המצבים ומקדם אותם בזמן. בהינתן מצב התחלתי הוא יתפתח למצב:
בעזרת שימוש במשוואת שרדינגר לאופרטור ההתפתחות בזמן ובאופן שבו הנ"ל פועל על המצבים ניתן לראות כי המצבים מקיימים את משוואת שרדינגר:
אם עובדים בבסיס המקום מקבלים את משוואת שרדינגר לפונקציית הגל:
תמונת שרדינגר שימושית במיוחד כאשר ההמילטוניאן אינו תלוי בזמן ועובדים בבסיס האנרגיה - . במקרה זה עבור מצב התחלתי , נקבל כי:
תמונת הייזנברגעריכה
בתמונת הייזנברג מצב המערכת קבוע בזמן , ולעומת זאת האופרטורים מתפתחים בזמן על פי:
ניתן להראות כי בתמונת הייזנברג, האופרטורים מקיימים את המשוואה הדיפרנציאלית הבאה:
תמונת האינטראקציהעריכה
בתמונה זו מפרידים את ההמילטוניאן לשני חלקים , כאשר אינו תלוי בזמן ואילו "אינטראקציה" שיכולה להיות תלויה בזמן. המצבים והאופרטורים בתמונת האינטראקציה מוגדרים על ידי:
בתמונה זו משתמשים במסגרת תורת ההפרעות התלויה בזמן.
המשמעות היא שבתמונת האינטראקציה יש שילוב של פונקציית גל שמתפתחת בזמן (לפי תמונת שרדינגר) ואופרטורים שמתפתחים בזמן (לפי משוואת הייזנברג).
קירוביםעריכה
חישובים מדויקים של התפתחות בזמן ניתן לבצע באופן כללי רק עבור מערכת בעלת המילטוניאן בלתי תלוי בזמן. עבור מערכות עם המילטוניאן תלוי בזמן יש צורך להיעזר בשיטות קירוב שונות, כגון: תורת ההפרעות התלויה בזמן, קירובים אדיאבטיים ועוד.