הומיאומורפיזם

נושא מתמטי

הומיאומורפיזם (נקרא גם שקילות טופולוגית) הוא פונקציה חד-חד-ערכית ועל בין שני מרחבים טופולוגיים השומרת על הטופולוגיה. באופן אינטואיטיבי יותר, זוהי פונקציה שרק מעקמת/מותחת/מעוותת את המרחב באופן רציף אך לא יוצרת בו קרעים או חורים.

הומיאומורפיזם בין ספל לכעך (טורוס)

פונקציות רציפות במרחב טופולוגי

עריכה

הגדרה פורמלית של רציפות בטופולוגיה

עריכה

יהיו   ו-  מרחבים טופולוגיים.

נאמר שהעתקה   היא רציפה אם המקור של כל קבוצה פתוחה הוא בעצמו קבוצה פתוחה. בניסוח פורמלי: לכל   הקבוצה

 

היא קבוצה פתוחה ב- , כלומר:  .

הגדרה זו היא הכללה של מושג הרציפות ממרחבים מטריים.

משפט

עריכה

התכונות הבאות לגבי העתקה   בין שני מרחבים טופולוגיים הן שקולות:

  1.   היא פונקציה רציפה.
  2. התכונה שבהגדרה מתקיימת לכל קבוצה בתת בסיס של הטופולוגיה ב-  .
  3. התכונה שבהגדרה נכונה אם מחליפים כל מופע של "קבוצה פתוחה" ב"קבוצה סגורה".
  4.   רציפה נקודתית בכל   במרחב. כלומר, לכל  , לכל סביבה   של   קיימת סביבה   של   כך ש- .
  5. לכל   מתקיים:   כאשר   הוא הסגור של קבוצה  .

תכונות

עריכה
  • הרכבה של פונקציות רציפות היא פונקציה רציפה.

הומיאומורפיזם

עריכה

הגדרה פורמלית

עריכה

יהיו   ו-  מרחבים טופולוגיים.

נאמר שהעתקה   היא הומיאומורפיזם אם:

  1. ההעתקה   היא חד-חד-ערכית ועל, כלומר קיימת  .
  2. ההעתקה   היא רציפה.
  3. ההעתקה ההפוכה   רציפה גם כן.

נשים לב שגם ההעתקה ההפוכה   היא הומיאומורפיזם בין הטופולוגיות.

מרחבים   ו-  שקיים ביניהם הומיאומורפיזם נקראים הומיאומורפיים (או שקולים טופולוגית).

תכונה טופולוגית הנשמרת תחת הומיאומורפיזם נקראת שמורה טופולוגית. דוגמה לשמורה טופולוגית היא קומפקטיות.

משפט

עריכה

כדי להראות ש-  חח"ע ועל היא הומיאומורפיזם מספיק להראות ש:

  1. ההעתקה   רציפה.
  2. ההעתקה   פתוחה: לכל   קבוצה פתוחה ב- , התמונה שלה   פתוחה ב- .

או ש:

  1. ההעתקה   רציפה.
  2. ההעתקה   סגורה: לכל   קבוצה סגורה ב- , התמונה שלה   סגורה ב- .

משמעות ושימושיים

עריכה

הומיאומורפיזם בין שני מרחבים טופולוגיים אומר שמבחינה טופולוגית הם זהים, עד כדי מתן שמות שונים לאיברי כל מרחב. ההומיאמורפיות של הפונקציה מספקת גם התאמה חח"ע ועל בין הטופולוגיות של כל מרחב ומערכת הסביבות של כל נקודה. מקובל לכנות תכונה הנשמרת תחת הומיאומורפיזם בשם "תכונה טופולוגית" או "אינווריאנט טופולוגי". דוגמאות לתכונות טופולוגיות בסיסיות הן קשירות, קשירות מסילתית, האוסדורפיות וקומפקטיות.

באופן אינטואיטיבי יותר, זוהי פונקציה שרק מעקמת/מותחת/מעוותת את המרחב באופן רציף אך לא יוצרת בו קרעים או חורים. משמעות זו רלוונטית הרבה יותר כאשר עוסקים בטופולוגיה אלגברית ולא רק בטופולוגיה קבוצתית.

ראו גם

עריכה



קישורים חיצוניים

עריכה
  מדיה וקבצים בנושא הומיאומורפיזם בוויקישיתוף