בהגדרתה הבסיסית ביותר, פונקציית הטנגנס מציינת, כפונקציה של זווית, את היחס במשולש ישר-זווית בין הניצב שמול הזווית לניצב שלידה. הגדרה זאת מתייחסת רק לזווית בתחום שבין 0 ל-90 מעלות או רדיאנים. משולשים עם זוויות זהות דומים ויחס הצלעות בהם תמיד זהה. לכן הטנגנס של זווית מוגדר היטב.
כמו כן, נפוץ מאוד השימוש בפונקציית הטנגנס כמנה של סינוס וקוסינוס בעלי אותה זווית. קל להגיע לזהות זו באמצעות הצבת היחסים שמייצגות פונקציות הסינוס והקוסינוס:
ניתן להרחיב את הטנגנס לכל זווית ממשית באמצעות מעגל היחידה, כאשר הרדיוס "מסתובב" נגד כיוון השעון כמספר הזווית (אם היא שלילית אז עם כיוון השעון). קיימות שתי דרכים לעשות זאת:
טנגנס הזווית שווה ליחס בין שיעור ה-y של קצה הרדיוס (הסינוס של הזווית) לשיעור ה-x שלה (הקוסינוס של הזווית): .
מעבירים למעגל משיק מהנקודה (1,0), וממשיכים את הרדיוס. שיעור ה-y של הנקודה בה הם נחתכים שווה לטנגנס הזווית.
פונקציה הטנגנס אינה מוגדרת עבור כאשר מספר שלם, כיוון שבדרך הראשונה, הקוסינוס שווה ל-0 (ומתקבלת חלוקה באפס), ובדרך השנייה הרדיוס מקביל למשיק ולא חותך אותו.
בדומה לפונקציית הקוסינוס שמתקבלת מפונקציית הסינוס על ידי הזווית המשלימה לזווית ישרה, ניתן גם להגדיר את פונקציית הקוטנגנס:
, אלא שפונקציה זאת שימושית הרבה פחות בגלל הזהות
, לפיה במקום השימוש בקוטנגנס אפשר פשוט להשתמש בהופכי של הטנגנס.
הפונקציה ההפוכה לפונקציית הטנגנס נקראת ארקטנגנס ומסומנת או . הפונקציה מוגדרת ועולה לכל x, וכיוון שפונקציית הטנגנס אינה חד-חד-ערכית, ניתן להחליט איזה טווח ערכים היא תקבל. נהוג להגדיר אותה לטווח הערכים . הנגזרת שלה היא .