פתיחת התפריט הראשי

בתחומים רבים במתמטיקה, מורפיזם מתייחס למיפוי משמר-מבנה ממבנה מתמטי אחד למבנה מתמטי אחר. רעיון המורפיזם מופיע רבות במתמטיקה מודרנית. לדוגמה:

תחום מתמטי מורפיזמים
תורת הקבוצות פונקציות
אלגברה ליניארית העתקות ליניאריות
תורת החבורות הומומורפיזם בין חבורות
טופולוגיה פונקציות רציפות

בתורת הקטגוריות, מורפיזם הוא רעיון דומה, אך כללי יותר: האובייקטים המתמטיים המיוחסים לא חייבים להיות קבוצות, והיחס ביניהם יכול להיות יותר כללי ממיפוי.

חקר המורפיזמים והמבנים (נקראים אובייקטים) שעליהם הם מוגדרים הוא מרכזי לתורת הקטגוריות. רבים מהמונחים הקשורים למורפיזמים, כמו גם האינטואיציה עליה הם מבוססים, מגיעים מקטגוריות מסוימות, כאשר האובייקטים הם פשוט קבוצות עם תוספת של איזשהו מבנה, והמורפיזמים הם פונקציות המשמרות את המבנה. בתורת הקטגוריות, מורפיזמים לעיתים נקראים חצים, בהתאם לצורת ייצוגם בדפוס ובהתאם לרעיון שחץ עובר מנקודת מקור לנקודת יעד.

ראו גםעריכה

קישורים חיצונייםעריכה

  מדיה וקבצים בנושא מורפיזם בוויקישיתוף
  ערך זה הוא קצרמר בנושא מתמטיקה. אתם מוזמנים לתרום לוויקיפדיה ולהרחיב אותו.