הבדלים בין גרסאות בדף "הבעיה השלישית של הילברט"

מ
←‏הבעיה: קישורים פנימיים
מ (r2.5.2) (בוט מוסיף: fr:Troisième problème de Hilbert)
מ (←‏הבעיה: קישורים פנימיים)
 
<!--איור לא יזיק-->
דוגמה פשוטה לעובדה זו אפשר לראות בנוסחה לשטח [[מקבילית]]. אם קודקודי המקבילית הם ABCD והגובה מהקודקוד A פוגע בצלע CD בנקודה H (שבתוך הצלע), אז אפשר לפרק את המקבילית למשולשל[[משולש ישר -זווית]] AHD ו[[טרפז]] ישר זווית ABCH. כאשר מחברים את המשולש מצדו האחר של הטרפז, על ידי הסעת המשולש AHD למשולש שקודקודיו BRC, מתקבל מלבן ABRH בעל אותו גובה ואותו בסיס כמו המקבילית. בהיפוך הסדר, אפשר לטעון ששוויון השטחים בין המלבן ABRH למקבילית ABCD נובע מכך שכל אחד מהם אפשר לפרק לטרפז ומשולש, כאשר שני הטרפזים ושני המשולשים חופפים זה לזה. דוגמה זו עשויה להטעות, משום שלא תמיד יפגע הגובה בנקודה שבתוך הצלע. כאשר מכלילים את הרעיון שהוצג כאן, יש צורך להפעיל את [[תכונת ארכימדס]] של ה[[מספר ממשי|מספרים הממשיים]]: אם צועדים בפסיעות שאורכן קבוע וחיובי, אפשר להגיע רחוק ככל שרוצים, ובלבד שמספר הצעדים גדול מספיק. גם כאשר למלבן ומקבילית יש אותם בסיס וגובה (ולכן אותו שטח), לא תמיד אפשר לפרק אותם לשני מרכיבים החופפים זה לזה בזוגות; תכונת ארכימדס מבטיחה, עם זאת, שתמיד יהיה קיים פירוק סופי.
 
הילברט מייחס את הבעיה השלישית לגאוס, שתהה האם האפשרות להסביר כל שוויון של '''נפחים''' באמצעות פירוק למרכיבים, בדומה לשוויון של שטחים: האם כל שני [[פאון|פאונים]] שווי נפח אפשר לפרק למספר סופי של מרכיבים חופפים. באופן מסורתי, שוויון נפחים הוסבר באמצעות תהליכי מיצוי שדרשו פירוק למספר גדל והולך של מרכיבים, באופן שמתקרב בסופו של דבר להליכי החישוב של ה[[אינטגרל מסוים|אינטגרל המסוים]]. הילברט חשד שלא ניתן להפטר מן המרכיב האינסופי, ולכן ניסח את הבעיה השלישית באופן שלילי, כפי שהוצג במבוא. (הילברט דרש בנוסף שהפאונים לא יהיו ניתנים לפירוק חופף, אפילו אחרי שמוסיפים לכל אחד מהם אותם מרכיבים חופפים).
8,258

עריכות