מרחב מכפלה פנימית – הבדלי גרסאות

מ
* את המכפלה הסקלרית אפשר לתאר באמצעות כתיב מטריציוני: <math> \lang \vec{x} , \vec{y} \rang = \vec{x}^T I \vec{y}</math> . אם נחליף את <math>\ I</math> ([[מטריצת היחידה]]) במטריצה <math>\ A</math> [[מטריצה חיובית|חיובית לחלוטין]] נקבל גם כן מכפלה פנימית.
* במרחב כל ה[[אינטגרל|פונקציות האינטגרביליות]] בריבוע ב[[אינטגרל לבג|מובן לבג]] בתחום <math>\,I</math>, שמסומן <math>\ L^2(I)</math>, המכפלה הפנימית היא <math> \lang f , g \rang = \int_I{ f(x) \ \overline{g(x)} \ dx } </math>. מכפלה זו הופכת את המרחב ל[[מרחב הילברט]], לפי משפט ריז-פישר.
* ב[[פיזיקה קוונטית]], משתמשים ב[[סימון דיראק]] (מכונה סימון "ברה-קט") לציון המכפלה הפנימית שפירושה הוא הטלת [[מצב קוונטי]] מסוים על מצב אחר. נהוג לקבוע שהיא הומוגנית דווקא ברכיב הימני ולא בשמאלי: <math>\ \lang a \phi | b \psi \rang = a^* b \lang \phi | \psi \rang</math>. כשארכאשר הכוכבית מסמנת צמוד קומפלקסי.