267,949
עריכות
(←תכונות) |
מ (בוט החלפות: על ידי, אידאל) |
||
==תכונות==
* בחוג נותרי <math>\ R</math>, כל אידאל מכיל מכפלה (סופית) של אידאלים ראשוניים. מוכיחים זאת באמצעות תנאי המקסימום. בפרט, יש מכפלה של
* כל [[שדה (מבנה אלגברי)|שדה]] הוא חוג נותרי. זה נובע מכך שהאידאלים היחידים בשדה הם השדה עצמו ו-<math>\ \{0\}</math>.
* [[משפט הבסיס של הילברט]]: אם <math>\ R</math> חוג נותרי אז <math>\ R[x]</math> חוג נותרי (<math>\ R[x]</math> הינו חוג הפולינומים במספר סופי של משתנים מעל <math>\ R</math>). ניתן להוכיח זאת בשתי דרכים - על ידי תנאי המקסימום ועל ידי תנאי הבסיס הסופי. ההוכחה של [[דויד הילברט|הילברט]] עצמו עושה שימוש ניכר בתנאי הבסיס הסופי.
* כל תמונה הומומורפית <math>\ R'</math> של חוג נותרי <math>\ R</math> היא נותרית בעצמה. במלים אחרות, אם <math>\ R</math> חוג נותרי ו-<math>\ I</math> אידאל, אז חוג המנה <math>\ R/I</math> גם הוא נותרי. ('''הוכחה''': כל
משלוש התכונות האחרונות נובע שכל אלגברה קומוטטיבית נוצרת סופית היא נותרית.
|