הבדלים בין גרסאות בדף "משפטי האי-שלמות של גדל"

מ (בוט החלפות: תוכנית)
דוגמה לטענה מסוג זה היא [[השערת הרצף]] שהוצעה על ידי [[גיאורג קנטור]] וקובעת שלא קיימת קבוצה ש[[עוצמה (מתמטיקה)|עוצמתה]] גדולה מזו של המספרים הטבעיים וקטנה מזו של המספרים הממשיים. בשנת [[1937]] הוכיח גדל כי לא ניתן '''להפריך''' השערה זו במסגרת [[תורת הקבוצות האקסיומטית| אקסיומות ZF+C]] ובשנת [[1963]] הוכיח [[פול כהן]] כי לא ניתן '''להוכיח''' השערה זו במסגרת ZF+C.
 
ב'''משפט האי-שלמות השני''' הוכיח גדל כי [[תורה (לוגיקה מתמטית)|תורה]] שהנה מספיק חזקה לקיים את [[אקסיומות פאנו]] (שהאריתמטיקה הרגילה מכילה אותה) ובפרט כזאת שמקיימת את ה[[תורת הקבוצות האקסיומטית|אקסיומות של תורת הקבוצות (ZF)]] לא יכולה להוכיח את העקביות של עצמה. משמעות הדבר היא שאין אפשרות להוכיח בתוך המערכת כי האקסיומות הן עקביות. אולם, האפשרות שאי אפשר להפריך את העקביות של עצמה תלויה במערכת האקסיומות שלה (יכול להיות שטענה זאת בלתי תלויה במערכת האקסיומות שלך ויכול להיות שהיא לא נכונה).
 
תנאי המשפט אינם מחייבים מספר סופי של אקסיומות. כלומר, גם אילו היו בידינו אינסוף אקסיומות של [[תורת המספרים]], היה המשפט מתקיים בתנאי הרגיל, שניתן יהיה לזהות בקלות האם טענה נתונה היא אקסיומה של המערכת (תכונה זו נקראת [[תורה אפקטיבית|אפקטיביות]]).
משתמש אלמוני