קירור באמצעות לייזרים – הבדלי גרסאות

מ
אין תקציר עריכה
מ (r2.7.3) (בוט מוסיף: fa:سرمایش لیزری)
מאין תקציר עריכה
{{עריכה|נושא=מדעי הטבע}}
'''קירור באמצעות לייזרים''' או '''קירור לייזר''' (באנגלית: '''Laser cooling''') הינוהוא שם של טכניקה לקירור [[אטום|אטומים]] לטמפרטורה נמוכה מאוד באמצעות [[אור]] וקרני [[לייזר]] בפרט.<br />
הטכניקה שלמעשה מאטה את האטומים למהירויות אפסיות וכך מקררת אותם, מהווה פתרון לבעיה הנוצרת בלכידה של [[חלקיק|חלקיקים]]ים לא טעונים. על חלקיקים טעונים חשמלית מופעלים כוחות משיכה ודחייה כאשר הם נעים בשדות חשמליים או מגנטיים, ואילו על חלקיקים נייטרלים לא. לכן לפני טכניקת קירור הלייזר לא הייתה ידועה אפשרות ללכוד או בכלל להשפיע על חלקיקים כאלו, ולכן היא מהווה כיום מרכיב הכרחי במלכודות חלקיקים ונמצאת בשימושים רבים בתחומי הפיזיקה, הכימיה והביולוגיה.
==מבוא==
===היסטוריה===
טכניקת הקירור באמצעות לייזרים מתבססת על הכוח הרב המופק בתהליך עירור. אור בתדירות הרזוננס של האטום יכול להיות בעל השפעה כה רבה על האטום מכיוון שכאשר פוטון נבלע באטום ומעורר אלקטרון בו לרמה אנרגטית גבוהה יותר, הוא בעצם מעביר לאטום את התנע שלו. הטכניקה למעשה מסתמכת על הבדל בכמות תהליכי העירור שאטום מסוים עובר, בהתאם לכיוונו ביחס למקור האור- על ציר הקרן. כלומר, יש להבטיח שאטום שינוע לכיוון המקור, ועל כן יואט כתוצאה מספיגת הפוטונים- יספוג הרבה יותר פוטונים מאטום הבורח מהמקור, ועל כן יואץ מספיגת הפוטונים. לצורך כך, בהסתמכות על עקרונות [[אפקט דופלר]], מקרינים על עננת אטומים אותה רוצים לקרר, אור בתדירות נמוכה במקצת מזו הדרושה לצורך תהליך עירור, כלומר- מעט מתחת לסף הרזוננס. כאשר פוטונים של הקרן ואטומים מהעננה ינועו זה לקראת זה- מ"נקודת מבטם" של האטומים לפוטונים יהיה תנע יחסי גדול יותר- כזה שיספיק לצורך עירור. במילים אחרות, התדירות של הפוטונים "תראה" לאטומים גבוהה יותר וכך היא תגיע לסף הרזוננס. זהו תהליך הנקרא [[הסחה לכחול]] והוא תוצאה של אפקט דופלר. במקרה ההפוך, בו אטומים בעננה יברחו מפוטוני הקרן- מ"נקודת מבטם" של האטומים לפוטונים יהיה תנע יחסי קטן יותר, כזה שרחוק עוד יותר מזה הדרוש לצורך עירור. במילים אחרות, התדירות של הפוטונים "תראה" לאטומים נמוכה יותר, והיא תתרחק עוד יותר מהסף הדרוש. זהו תהליך הנקרא [[הסחה לאדום]] וגם הוא תוצאה של אפקט דופלר. עבור כל קשת הכיוונים שבין כיוונים אלו, הסיכוי לעירור יגדל ככל שהזווית בין כיוון תנועת האטומים וכיוון תנועת הפוטונים- תקטן.<br /> כך יוצא, שללא תלות בכיוון ממנו מקרינים על החומר, כמות גדולה מאוד של אטומים שנעים כלפי הקרן יואטו, ואילו כמות כמעט אפסית של אטומים שבורחים מהקרן יואצו.<br />
לאחר תהליך זה, מתבצע תהליך נוסף. בשלבו השני של תהליך עירור, האטומים שעוררו שואפים לחזור למצבם הטבעי. הם פולטים פוטון זהה בתכונותיו (בין היתר בתנע שלו) לפוטון שהתנגש בהם, לכיוון אקראי, על מנת לאזן את האנרגיה. כתוצאה מ[[חוקי ניוטון#החוק השלישי של ניוטון|החוק השלישי של ניוטון]] האטום ירתע באותה עוצמה שבה נפלט הפוטון- בכיוון ההפוך לכיוון הפליטה. מכיוון שהפוטון זהה בתכונותיו לפוטון המתנגש, האטום יצבור תנע זהה לזה שאיבד בספיגה. תהליך זה יכול להשפיע על האטום ב-3 צורות: <br />
-בראשונה, הפוטון ייפלט בכיוון בעל רכיב מהירות ([[וקטור (פיזיקה)|וקטורי]]) אחד שכיוונו זהה לכיוון תנועת האטום (כל קשת הכיוונים המתוארת בתרשים 2, שלב א') ומכיוון שהאטום נתרע לכיוון ההפוך, הוא מואט בשנית. זוהי אפשרות אידאלית, אבל התהליך הינוהוא אקראי לחלוטין ולכן לא ניתן להבטיח שזו תתקיים כל פעם. <br />
-בשנייה, הפוטון ייפלט בכיוון בעל רכיב מהירות אחד שכיוונו הפוך מכיוון תנועת האטום (כל קשת הכיוונים המתוארת בתרשים 2, שלב ב'). מכיוון שהאטום נרתע לכיוון ההפוך, הוא מואץ. ולמרות זאת, האטום יואץ ביחס למהירותו לפני הפליטה בלבד אך מהירותו הכוללת תישאר נמוכה יותר ממהירותו לפני הספיגה הראשונית של הפוטון. ההסבר לכך נובע מכך שחיבור וקטורי של שני רכיבי מהירות האטום לאחר הפליטה (המהירות של האטום בכיוון הראשוני, לאחר הספיגה, והמהירות שצבר לאחר הפליטה)- קטן יותר מהמהירות שהייתה לאטום בכיוון הראשוני לפני הספיגה. <br />
-בשלישית, שמתרחשת באחוז קטן מאוד מהמקרים, הפוטון ייפלט לכיוון ההפוך בדיוק מכיוון תנועת האטום. במקרה זה יצבור האטום את כל התנע שאיבד בספיגה ולא יתרחש שינוי במהירותו הכוללת בסוף התהליך. <br />
חומר מכל סוג שהוא מורכב מכמות עצומה של [[מולקולה|מולקולות]] ואטומים, שנעים בכל הכיוונים במהירויות שונות. כאשר מוקרנת על החומר קרן לייזר, פוטונים רבים של הקרן מגיבים עם אטומים רבים שנעים בכיוונים שונים במרחב. הרבה מאטומים אלו מתרחקים ממקור הלייזר, כלומר- כיוון תנועתם מכיל רכיב מהירות וקטורי שכיוונו זהה לכיוון תנועת הפוטונים (קשת הכיוונים המתוארת בתרשים 2, שלב א'). אטומים אלו, כאשר יספגו פוטונים ויקבלו את התנע שלהם, יואצו כתוצאה מכך. ומכיוון ששום דבר אינו מונע מאטומים אלו לספוג פוטונים (בניגוד למקרה בו מתמשים בטכניקת הקירור), התהליך יחזור על עצמו וייצור עלייה משמעותית במהירות האטומים. <br />
בנוסף, גם בתהליך פליטת הפוטון (בשלב ההתאזנות) יכול האטום להאיץ. מכיוון שהאטום נרתע לכיוון ההפוך מכיוון הפליטה, כל פליטה בכיוון בעל רכיב מהירות שכיוונו הפוך מכיוון תנועת הפוטון הפוגע (קשת הכיוונים המתוארת בתרשים 2, שלב ב'), תגרום להאצה נוספת של האטום. כך יוצא, שבערך ברבע מהמקרים (מבחינה סטטיסטית) האטום יואץ בשני השלבים, ובערך בחצי הוא יואץ בתהליך הספיגה. <br />
ישאולם לציין שכאשרכאשר אטום הואץ בתהליך הספיגה, גם אם הפוטון הנפלט מאט את האטום, הוא מאט אותו ביחס למהירות אחרי הספיגה, אך מהירותו הכוללת נותרת גדולה יותר ממהירותו לפני הספיגה (פרט למקרה יחיד בו הפליטה הפוכה בדיוק לכיוון הספיגה- ואז המהירות נותרת כפי שהייתה לפני כל התהליך). <br />
לפיכך, כאשר התהליך חוזר על עצמו מספיק אטומי החומר מואצים כל כך משמעותית, לרוב עד כדי מעבר של מצב הצבירה ([[התכה]], [[המסה]] או [[התאדות]]). כדי ליצור אפקט האטה על ידי לייזר, יש לדאוג לפרמטרים רבים לפני ההקרנה, ולכן התוצאה המוכרת של הקרנת לייזר על חומר היא חימומו.
 
==שימושים ושיטות יעילות==
===מלכודת מגנטו-אופטית===
'''מלכודת מגנטו-אופטית''' (באנגלית: '''Magneto-Optical Trap''' או '''MOT''') הינה מכשיר המשתמש בטכניקת קירור הלייזר ובשדות מגנטיים על מנת ללכוד אטומים קרים. שימוש במספר קרני לייזר המכוונות לפי טכניקת קירור הלייזר מקרר את האטומים ומונע מהאטום תנועה ספונטנית, ואילו שדות מגנטיים מקוטבים (אשר הכוח המגנטי שהם מפעילים תלוי במיקום האטום) מונעים מהאטומים המקוררים "לזלוג" החוצה ממפגש הקרניים. מלכודת מגנטו-אופטית יכולה לקרר עננת אטומים עד לטמפרטורה של כ- 300μK (מיקרו [[קלווין]])- 0.0003 קלווין, כאשר 0 קלווין הינוהוא [[האפס המוחלט]].
 
===סירופ אופטי===
[[קובץ:OpticalMolasses.gif|שמאל|ממוזער|200px|סירופ אופטי]]
'''סירופ אופטי''' (באנגלית: '''Optiacl Molasses'''), הינוהוא שם של שיטה יעילה במיוחד של קירור באמצעות לייזרים. סירופ אופטי מורכב מ-3 זוגות של קרני לייזר [[קיטוב|מקוטבות]] מעגלית ומכוונות מעט מתחת לסף הרזוננס. זוגות הקרניים מונחים על שלושת צירי המרחב הראשיים כך שקרניים אלו ייפגשו בנקודה בה נמצאת עננת האטומים אותה מקררים. כל כיוון תנועה של אטום מחולק לשני רכיבי מהירות אנכיים היושבים על צירי המרחב הראשיים, ובכל אחד מצירים אלו ישנן שתי קרניים מנוגדות, שכיוון אחת מהן יהיה מנוגד לכיוון רכיב המהירות. ומכאן, ששיטה זו יעילה כל כך מכיוון שהיא מאפשרת השפעה על כל האטומים בעננה, לא משנה לאיזה כיוון הם נעים, שכן תמיד כיוון שתיים מהקרניים יהיה מנוגד לכיוון רכיבי המהירות של האטום.<br /> קירור באמצעות סירופ אופטי מסוגל לקרר אטומים לטמפרטורה של כ-40μK. טמפרטורה זו הינה נמוכה יותר מזו המתאפשרת בשימוש במלכודת מגנטו-אופטית, ואף נמוכה מהטמפרטורה המשוערת ש[[#גבול דופלר|גבול דופלר]] קבע כי מתחת אליה לא ניתן לקרר אטומים. על כן, למרותאף על פי שהעיקרון של קירור באמצעות סירופ אופטי נובע מעיקרון הטכניקה הבסיסית, סירופ אופטי נחשב לקירור תת-דופלרי והוא היווה פריצת דרך משמעותית כאשר הוכיח שגבול דופלר אינו מהווה את גבול יכולת הקירור.
 
===מלקחיים אופטיים===
==מגבלות==
===גבול דופלר===
גבול דופלר הינוהוא גבול שמתאר טמפרטורה מינימלית ממנה לא ניתן לרדת כאשר מקררים אטומים בעזרת קירור דופלרי. גבול זה נובע מהתנע הנצבר באטום במהלך [[פליטה ספונטנית|פליטת פוטון ספונטנית]] שמתרחשת בתהליכים ספונטנים ובלתי ניתנים למניעה, כגון [[רדיואקטיביות|דעיכה רדיואקטיבית]] (היוצרת [[קרינת גמא]] רבת אנרגיה). במילים אחרות, קירור באמצעות לייזרים מצליח להפחית את תנועת האטום הנובעת מהכוח הממוצע הפועל על חלקיק מסוים, אך אינו יכול למנוע סטיות של כוח זה אשר יוצרות תהליך חימום. עד טמפרטורה מסוימת, התנע שצובר האטום בעקבות פליטה ספונטנית למעשה זניח אם נמדד לאורך זמן, מכיוון שכיוון הפליטה רנדומלי והוא כביכול גם שולל את עצמו ובקושי מביא לשינוי במהירות הכוללת. אך בטמפרטורה אותה גבול דופלר מתאר- בה נוצר שיווי משקל בין קצב הקירור באמצעות הקרניים ובין אפקט החימום הנ"ל, לא ניתן להמשיך ולקרר באמצעות קירור דופלרי.<br />
את הטמפרטורה המתוארת בגבול דופלר ניתן להביע באמצעות הנוסחה:
<math>\hbar \gamma /2k_{B}</math>
 
===גבול יכולת מעשית===
השם הניתן לטכניקת הקירור הבסיסית- "קירור דופלרי", נובע מהשפעה של אפקט דופלר על תהליך הקירור. למעשה, בעקבות האפקט, נוצרת תלות בין מהירות האטום (על ציר הקרן) ובין כוח ההאטה שמופעל עליו. במילים אחרות, ניתן לראות כי ככל שמהירות האטום (כפי שהוא נצפה במערכת המעבדה) ביחס למהירות פוטוני הקרן (כפי שהם נצפים במערכת המעבדה) קטנה יותר, כך כוח ההאטה המופעל על האטום- קטן. כלומר, שככל שתהליך הקירור בעננה מתקדם, והטמפרטורה הכוללת שלה קטנה, יש להגדיל את תדר המקור על מנת שיצליח להשלים את האנרגיה הדרושה לצורך העירור של האטומים בעננה. מבחינה תאורטית, ככל שנגדיל את התדר (בהתאם לטמפרטורה), העננה תקרר יותר ויותר- כמובן- עד גבול דופלר. אך מבחינה מעשית, למכשיר המפיק את הלייזר יש כמות תדרים מוגבלת, כך שבשלב מסוים לא ניתן לעלות בתדר על מנת להמשיך ולקרר (אלא אם משתמשים במכשיר בעל תדרים גבוהים במיוחד, אך במקרה זה הוא לא יהיה יעיל לצורך קירור העננה כאשר היא עוד "חמה").
 
===דחיסות עננה מקסימלית===
לצורך יצירת אפקט קירור יעיל, ישנה מגבלה לדחיסות העננה אותה מקררים. ככל שהריכוז בעננה גדל, כך גדל הסיכוי שתתרחש תופעה של ספיגת פוטונים לעננה עצמה אשר תבצע תהליך חימום משמעותי. ספיגה זו מתרחשת כאשר נוצרת התנגשות בין שני אטומים בעננה, בזמן שאחד מהם נמצא במצב של עירור. במקרה כזה קיימת אפשרות שכאשר האלקטרון שעורר יחזור לרמת היסוד עם האנרגיה הנוספת שהוא יוצר תופק אנרגיה קינטית כזו שתוסף להתנגשות ותגרום לחימום האטומים. תופעה זו מתנגדת לתהליך הקירור ועל מנת למנוע אותה יש להגביל את דחיסות העננה.
 
===מבנה אטומי- חומרים הניתנים לקירור===
<math>\ \frac{\lambda_{obs}}{\lambda_{emit}} = \frac{1+v/c}{\sqrt{1-v^2/c^2}} </math> <br />
כאשר- <math>\lambda_{obs}</math> מייצג את אורך הגל ה"נצפה" (על ידי האטומים), <math>\lambda_{emit}</math> מייצג את אורך הגל המופק (האורך שהמקור מפיק באמת), v מייצג את מהירות האטומים ומובע כחיובי כאשר האטומים מתרחקים מהמקור וכשלילי כאשר הם מתקרבים למקור, ו-c הינה [[מהירות האור]].
===יחס בין טמפרטורת האטום למהירותו===
כפי שניתן להסיק מחוק החלוקה השווה, קיים יחס ישר בין מהירותו של האטום לבין הטמפרטורה שלו. לפיכך, הטכניקה אשר למעשה מאטה את האטומים בעצם מקררת אותם ומכאן שמה- "קירור באמצעות לייזרים". את היחס בין המהירות והטמפרטורה ניתן להביע על ידי פיתוח של חוק החלוקה השווה, כך:
<br/>