מרחב מכפלה פנימית – הבדלי גרסאות

מ
** אם <math>\ \mathbb{F}=\mathbb{C}</math> אזי [[מכפלה סקלרית|המכפלה הסקלרית]] הבאה <math> \lang \vec{x} , \vec{y} \rang = x_1 \overline{y_1} + \cdots + x_n \overline{y_n} </math> היא מכפלה פנימית.
* [[מכפלה סקלרית|המכפלה הסקלרית]] הסטנדרטית ב[[מרחב אוקלידי|מרחב האוקלידי]] <math>\mathbb{R}^3</math> שנתונה על ידי <math>\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b} | \cos \theta</math> (כאשר <math>\theta</math> היא ה[[זווית]] בין ה[[וקטור (פיזיקה)|ווקטורים]]) היא מכפלה פנימית.
* מכפלתעבור שתי [[וקטור שורהמטריצה|מטריצות]] במאותו סדר A ו-B, הגודל <math>\mathrm{tr}(AB^t)</math> (כלומר ה[[וקטורעקבה עמודה(אלגברה)|עקבה]] לפי החוקים של ה[[כפל מטריצות|מכפלה]] מהווהשל האחת ב[[שחלוף (מתמטיקה)|שחלוף]] של השניה) הוא מכפלה פנימית.
* את המכפלה הסקלרית אפשר לתאר באמצעות כתיב מטריציוני: <math> \lang \vec{x} , \vec{y} \rang = \vec{x}^T I \vec{y}</math> . אם נחליף את <math>\ I</math> ([[מטריצת היחידה]]) במטריצה <math>\ A</math> [[מטריצה חיובית|חיובית לחלוטין]] נקבל גם כן מכפלה פנימית.
* במרחב כל ה[[אינטגרל|פונקציות האינטגרביליות]] בריבוע ב[[אינטגרל לבג|מובן לבג]] בתחום <math>\,I</math>, שמסומן <math>\ L^2(I)</math>, המכפלה הפנימית היא <math> \lang f , g \rang = \int_I{ f(x) \ \overline{g(x)} \ dx } </math>. מכפלה זו הופכת את המרחב ל[[מרחב הילברט]], לפי משפט ריז-פישר.
8,258

עריכות