הבדלים בין גרסאות בדף "פתרון אנליטי"

נוספו 142 בתים ,  לפני 7 שנים
אין תקציר עריכה
ב[[מתמטיקה]], '''פתרון אנליטי''' של [[משוואה]] או מערכת משוואות הוא הצגה של הפתרון באופן ישיר ומפורש, ללא צורך בקירובים או סכומים אינסופיים. בדרך כלל, גם אם לא תמיד, מועדף פתרון אנליטי על-פני ''[[אנליזה נומרית|פתרון נומרי]]'', הדורש סדרת קירובים, משום שתכונות הפתרון והתלות שלו בפרמטרים קלה יותר לזיהוי וניתוח כשהפתרון מפורש.
 
פתרון של [[משוואה פולינומית]] או מערכת של משוואות כאלה הוא פתרון אנליטי עבור אחד המשתנים, אם הוא מציג אותו כפונקציה מפורשת של שאר המשתנים והפרמטרים. לדוגמא, את משוואת המעגל <math>\ x^2+y^2=R^2</math> אפשר לפתור בצורה <math>y = \pm \sqrt{R^2 - x^2}</math>, שבה הצבת ערכים באגף ימין נותנת מיד ערך למשתנה y שבאגף שמאל. יש משוואות רבות שלא ניתן לפתור באופן כזה.