47,498
עריכות
מ (←הוכחה: minor chenges) |
(כנראה) |
||
תהי <math>\ \langle X\rangle</math> חבורה חופשית. נסתכל על ה[[מולטיגרף]] עם צומת אחד ועם <math>|X|</math> קשתות המחברות את הצומת לעצמו. זהו [[מרחב טופולוגי]] המתקבל מלקיחת <math>|X|</math> מעגלים והדבקתם זה לזה בנקודה אחת משותפת לכל המעגלים. ה[[חבורה יסודית|חבורה היסודית]] של המולטיגרף היא <math>\ \langle X\rangle</math> - כל לולאה המקיפה את אחת הקשתות פעם אחת היא יוצר. כל תת-חבורה של החבורה היסודית היא חבורה יסודית של [[מרחב כיסוי]]. קל לראות שכול מרחב כיסוי של מולטיגרף הוא גם מולטיגרף. מכאן שאם נוכיח שהחבורה היסודית של מולטיגרף היא תמיד חופשית, נקבל את משפט נילסן-שרייר.
נבחר [[עץ פורש]] של המולטיגרף (להוכחת קיומו נחוצה [[אקסיומת הבחירה]], אם הגרף
[[קטגוריה:משפטים בתורת החבורות|נילסן-שרייר]]
|