תת-קבוצה – הבדלי גרסאות

אין שינוי בגודל ,  לפני 9 שנים
מ (בוט: מעביר קישורי בינויקי לויקינתונים - d:q177646)
באמצעות יחס ההכלה ניתן להגדיר את יחס השוויון בין קבוצות; אומרים שהקבוצה <math>\ A</math> שווה לקבוצה <math>\ B</math> [[אם ורק אם]] הקבוצה <math>\ A</math> מכילה את הקבוצה <math>\ B</math> וגם הקבוצה <math>\ B</math> מכילה את הקבוצה <math>\ A</math>. (בכתיב פורמלי: <math>A = B\iff B\subseteq A \and A\subseteq B</math>).
 
באמצעות יחס ההכלה ויחס השוויון ניתן להגדיר יחס נוסף; כאשר הקבוצה <math>\ A</math> מכילה את הקבוצה <math>\ B</math> אך אינה שווה לה (יש איבר בקבוצה <math>\ A</math> שהוא אינו איבר בקבוצה <math>\ B</math>, ובניסוח פורמלי <math>\ B \subseteq A</math> וגם <math>\ B \neq A</math>), נאמר שהקבוצה <math>\ A</math> '''מכילה ממש''' את הקבוצה <math>\ B</math>, או במילים שקולות: הקבוצה <math>\ B</math> היא '''חלקית ממש''' לקבוצה <math>\ A</math>. יחס זה מסמנים <math>\ B \subset A</math>. (בכתיב פורמלי: <math>AB \subset BA\iff B\subseteq A \and B\neq A</math>).
 
הסימון <math>\ \subset</math> עשוי להטעות: בעוד שכאן (ובמרבית הספרים והמאמרים המודרניים) מציינים <math>\ \subseteq</math> ו-<math>\ \subset</math> הכלה ו"הכלה ממש" בהתאמה, יש ספרים שבהם משתמשים בסימונים <math>\subset</math> ו-<math>\subsetneq</math> לאותן מטרות, בהתאמה.
משתמש אלמוני