הבדלים בין גרסאות בדף "מספר אלגברי"

הוסרו 54 בתים ,  לפני 6 שנים
ברור מאליו שאם מדובר על רציונליים אז בפרט על שלמים
מ (בוט: מעביר קישורי בינויקי לויקינתונים - d:q168817)
(ברור מאליו שאם מדובר על רציונליים אז בפרט על שלמים)
'''מספר אלגברי''' הוא [[מספר מרוכב]] המהווה שורש של [[פולינום]] בעל מקדמים [[מספר רציונלי|רציונליים]] (או [[מספר שלם|שלמים]], אין הבדל). בפרט, כל מספר רציונלי q הוא אלגברי, משום שהוא פותר את המשוואה <math>\ x-q=0</math>. מספר (מרוכב) שאינו אלגברי נקרא [[מספר טרנסצנדנטי]].
 
אוסף כל המספרים האלגבריים מהווה [[שדה (מבנה אלגברי)|שדה]], הנקרא [[שדה המספרים האלגבריים]]. אוסף המספרים האלגבריים הוא [[קבוצה בת מנייה|בן מנייה]], בעוד שה[[משלים (תורת הקבוצות)|משלים]] לו אינו בן מנייה. [[הוכחת האי-מנייה הראשונה של קנטור|תכונה זו הוכחה]] על ידי [[גאורג קנטור]]. במובן זה ישנם הרבה יותר מספרים שאינם אלגבריים מאשר מספרים אלגבריים, למרות שבאופן מעשי קשה ביותר להוכיח שמספר נתון (כגון [[e]] או [[פאי]]) אינו אלגברי (להוכחות ראו [[טרנסצנדנטיות של e]] ו[[משפט לינדמן]]).
משתמש אלמוני