הבדלים בין גרסאות בדף "שילוש זווית"

נוספו 267 בתים ,  לפני 7 שנים
 
[[קובץ:Angle trisection.jpg|שמאל|ממוזער|500px|שילוש זווית באמצעות רצועה. נתונה הזווית AOB (באיור:בכחול), כאשר O מרכזו של מעגל שעליו מונחות הנקודות A ו-B. ממשיכים את AO עד לחיתוך D עם המעגל, ומעבירים דרך D מקביל ל-OB, החותך את המעגל בנקודה E. באמצעות הרצועה, מאתרים על הישר OB נקודה X כך שהמרחק ממנה לחיתוך Y של המעגל עם DX שווה לרדיוס המעגל (זו פעולה שלא ניתן לבצע בסרגל ומחוגה). הזווית EDX (באיור: באדום) שווה לשליש הזווית AOB.]]
* [[היפיאס]] (במאה החמישית לפני הספירה) הראה שבעזרת [[קוואדרטריקס]] ניתן לחלק זווית נתונה לשלושה חלקים, ולמעשה לכל מספר שלם של חלקים. (שמו של עקום זה בא לו מיכולתו [[תרבוע העיגול|לרבע את המעגל]]). שיטה זו ניתנת לתאור נוסף: נניח ש- P נקודה על שפת מעגל ברדיוס R; ה[[מקום גאומטרי|מקום הגאומטרי]] של כל הנקודות המתקבלות מהמשכת הישר העובר ב-P דרך נקודה X על המעגל, למרחק של R, מאפשר לשלש כל זווית קטנה מ-135° אשר קודקודה הוא מרכז המעגל, כמתואר באיור משמאל.
* [[ארכימדס]] הראה שאפשר, בעזרת מחוגה ורצועה (סרגל כפול, כלומר סרגל שיש לו שני צדדים ישרים מקבילים, במרחק ידוע), לחלק זווית נתונה לשלושה חלקים. ראו איור משמאל.
* [[ניקומדס (מתמטיקאי)|ניקומדס]] (במאה השנייה לפני הספירה) הראה שאפשר לשלש זווית אם נעזרים ב[[קונכואידה]].
* [[אטיין פסקל]], אביו של [[בלז פסקל]], הראה שאפשר לשלש את הזווית באמצעות [[קרדיואידה]]; שיטה זו דומה לשיטתו של ניקומדס.
* נניח ש- P נקודה על שפת מעגל ברדיוס R; ה[[מקום גאומטרי|מקום הגאומטרי]] של כל הנקודות המתקבלות מהמשכת הישר העובר ב-P דרך נקודה X על המעגל, למרחק של R, מאפשר לשלש כל זווית קטנה מ-135° אשר קודקודה הוא מרכז המעגל, כמתואר באיור משמאל.
* [[היפיאס]] (במאה החמישית לפני הספירה) הראה שבעזרת [[קוואדרטריקס]] ניתן לחלק זווית נתונה לשלושה חלקים. (שמו של עקום זה בא לו מיכולתו [[תרבוע העיגול|לרבע את המעגל]]).
* [[ארכימדס]] הראה שאפשר, בעזרת מחוגה ורצועה (סרגל כפול, כלומר סרגל שיש לו שני צדדים ישרים מקבילים, במרחק ידוע), לחלק זווית נתונה לשלושה חלקים. ראו איור משמאל.
 
==הוכחת אי-אפשרות==