הבדלים בין גרסאות בדף "תדירות"

נוספו 64 בתים ,  לפני 6 שנים
ויקישיתוף בשורה
(ביטול גרסה 14743751 של 177.207.106.168 (שיחה))
(ויקישיתוף בשורה)
==זמן מחזור==
תופעה מחזורית ניתנת לתיאור על ידי [[פונקציה מחזורית]] של הזמן - פונקציה שחוזרת על עצמה עם השהייתה בזמן קבוע שנקרא '''זמן המחזור''' ומסומן T. זהו הזמן שלוקח לתופעה להשלים מחזור אחד. המשמעות של התדירות [[מספר הופכי|הופכית]] לזו של זמן המחזור, ולכן:
<math>f= \frac {1}{T}</math>. כך ניתן לחשב את התדירות של תופעה מחזורית מתוך זמן המחזור שלה. עבור [[תנועה מעגלית]]: <math>f= \frac {1}{T} = \frac {1}{(\frac {2{\pi}R}{v})} = \frac {v}{{2{\pi}R}} </math>.
 
== תדירות זוויתית ==
 
== גלים ==
בתורת ה[[גל|גלים]]ים המשמעות של תדר הגל היא מספר הפעמים שהגל חוזר על עצמו ביחידת זמן, בנקודה מסוימת במרחב. הגל הפשוט ביותר הוא [[גל סינוסי]] והוא מתואר על ידי המשוואה: <math>\ y(x,t)=\sin(kx-\omega t)</math>, והתדירות הזוויתית שלו היא ω. {{כ}}k הוא [[מספר גל|מספר הגל]] והקשר שלו לתדירות תלוי ב[[יחס נפיצה|יחס הנפיצה]]. מספר הגל מתאר את קצב התנודות כתלות במרחב באותו האופן שבו התדירות הזוויתית מתארת את קצב התנודות כתלות בזמן. התדירות של גל שווה ליחס בין [[מהירות פאזה|מהירות הפאזה]] לבין [[אורך גל|אורך הגל]] שלו: <math>f = \frac{v}{\lambda}</math>. עבור יחס נפיצה לינארי: <math>\, \omega = vk </math>.
 
== אנליזת פורייה ==
ניתן להציג את רוב הפונקציות המחזוריות כסכום של פונקציות [[סינוס (טריגונומטריה)|סינוס]] ו[[קוסינוס]] (או [[האקספוננט המרוכב|אקספוננטים מרוכבים]]) בתדרים שונים על ידי [[טור פורייה]], ואת רוב הפונקציות שאינן בהכרח מחזוריות כאינטגרל על ידי [[התמרת פורייה]]. התמרת פורייה נותנת את הספקטרום של הפונקציה - מידת התרומה לפונקציה של כל התדרים שממנה היא מורכבת, ויש לה חשיבות רבה ב[[אלקטרוניקה]] וב[[תקשורת]]. זאת מכיוון שהיחס בין ה[[קלט|כניסה]] וה[[פלט|יציאה]] של כל מערכת לינארית בלתי-משתנה בזמן תלויה בתדר של הכניסה אם היא סינוסית, או בספקטרום של כניסה כלשהי. [[פונקציית תמסורת|פונקציית התמסורת]] מתארת את הקשר בין יציאת המערכת לכניסתה כתלות בתדר והיא שימושית במיוחד בהבנת פעולתם של [[מסנן (אלקטרוניקה)|מסננים]], שהם אבני הבניין של תחומים רבים באלקטרוניקה.
 
לתיאור התנהגות המערכת כתלות בזמן קוראים תיאור במישור הזמן, הוא טבעי לנו מכיוון שאנו חיים בו. לתיאור תגובת המערכת לכניסות סינוסיאודליות כתלות בתדר שלהם קוראים תיאור ב'''מישור התדר'''. במישור התדר ניתן לתאר את היציאה של כל מערכת כמכפלה של הכניסה אליה בפונקציית התמסורת שלה, בעוד שבמישור הזמן נדרשים לבצע פעולה מתמטית מסובכת - [[קונבולוציה]]. מסיבה זו עובדים בדרך כלל במישור התדר.
 
== פיזיקה ==
* [[הספקטרום האלקטרומגנטי]]
* [[תורת התנודות]]
 
==קישורים חיצוניים==
{{ויקישיתוף בשורה}}
 
[[קטגוריה:גדלים פיזיקליים]]