הבדלים בין גרסאות בדף "משפטי האי-שלמות של גדל"

מ
(לא בהכרח)
'''משפטי האי-שלמות של [[קורט גדל]]''' הנםהם צמד [[משפט (מתמטיקה)|משפטים]] יסודיים ב[[לוגיקה מתמטית]], הענף החוקר את יסודות ה[[לוגיקה]] בכלים [[מתמטיקה|מתמטיים]].
 
גדל הראה שכל מערכת אקסיומות [[תורה אפקטיבית|אפקטיבית]] ועשירה מספיק (כזו המכילה חלק מספיק גדול מאקסיומות ה[[אריתמטיקה]]) שהיא [[עקביות (לוגיקה מתמטית)|עקבית]], היא בהכרח לא [[שלמות|שלמה]], משמע שקיימות [[עצמאות_(לוגיקה_מתמטית)|טענות שלא ניתנות להכרעה]], כלומר שלא ניתן להוכיחן או להפריכן. בכך גדל שם קץ לניסיונות רבים [[תוכנית הילברט|לבנות מערכת אקסיומטית כוללת]] שממנה תנבע כל המתמטיקה.