הבדלים בין גרסאות בדף "הצגה ליניארית"

באופן פורמלי, הצגה היא הומומורפיזם <math>\ G \rightarrow \operatorname{GL}(V)</math>, כאשר G היא החבורה הנתונה, V הוא מרחב וקטורי מעל שדה F, ו- <math>\ \operatorname{GL}(V)</math> היא חבורת ה[[העתקה לינארית|העתקות הלינאריות]] ההפיכות של המרחב. כאשר V הוא מרחב מ[[ממד (אלגברה לינארית)|ממד]] סופי n, אפשר לזהות חבורה זו עם [[חבורת המטריצות ההפיכות]] <math>\ \operatorname{GL}_n(F)</math>. במקרה זה n נקרא '''ממד ההצגה'''.
 
מהצגה נתונה אפשר ליצור '''הצגות שקולות''', על ידי [[הצמדה (תורת החבורות)|הצמדה]] בהעתקה לינארית קבועה; דהיינו, אם <math>\ \pi : G \rightarrow \operatorname{GL}(V)</math> היא הומומורפיזם ו-A העתקה הפיכה, אז גם הפונקציה <math>\ g \mapsto A \pi(g) A^{-1}</math> היא הצגה, השקולה להצגה המקורית.
 
אם קיים תת-מרחב <math>\ W \subset V</math> שההצגה פועלת עליו, כלומר <math>\ \pi(g)(W) \subseteq W</math> לכל <math>\ g\in G</math>, אז ההצגה '''פריקה'''. הצגה שאין לה תת-מרחב כזה היא {{עוגן2|הצגה אי-פריקה|'''הצגה אי-פריקה'''}}. כל ההצגות האי-פריקות של [[חבורה אבלית]] סופית הן חד-ממדיות.