הבדלים בין גרסאות בדף "עץ פורש"

הוסרו 48 בתים ,  לפני 14 שנים
מ
תיקון קישור
(בוט - מחליף 'דוגמא' ב'דוגמה')
מ (תיקון קישור)
אפשר לקבל עץ פורש על-ידי הסרת קשתות מן הגרף, בזו אחר זו, בלי לפגוע בקשירות: אם הגרף כולל מעגל (כלומר, סדרה של קודקודים <math>\ v_0,v_1,\dots,v_n</math> שבה כל זוג קודקודים סמוכים, וכן הזוג <math>\ v_0,v_n</math>, מחוברים בקשת), אפשר להסיר את אחת הקשתות של המעגל. על תהליך זה אפשר לחזור עד שבגרף אין מעגלים, והתוצאה היא עץ פורש. מכיוון שמספר הקשתות בעץ תלוי רק במספר הקודקודים שלו, לכל העצים הפורשים של אותו גרף יש אותו מספר קשתות.
 
את מספר העצים הפורשים של גרף אפשר לקבל מ[[משפט קירכהוף (תורת הגרפים)|משפט קירכהוף]]: אם A היא [[מטריצת שכנויות|מטריצת השכנויות]] של הגרף ו- D ה[[מטריצה אלכסונית|מטריצה האלכסונית]] שרכיבי האלכסון שלה הם ה[[דרגה (תורת הגרפים)|דרגות]] של הקודקודים, אז המטריצה <math>\ D-A</math> אינה [[מטריצה הפיכה|הפיכה]] (שכן שורותיה מסתכמות לאפס). עם זאת, מכפלת ה[[ערך עצמי|ערכים העצמיים]] השונים מאפס שווה למספר העצים הפורשים, כפול במספר הקודקודים (זהו מספר העצים הפורשים, כשסופרים עצים עם שורש).
 
במקרה המיוחד של הגרף השלם על n קודקודים (הגרף שכל שני קודקודים שלו מחוברים בקשת אחת), מספר העצים הפורשים הוא <math>\ n^{n-2}</math>. לתוצאה זו, הקרויה [[נוסחת קיילי]], ידועות הוכחות רבות.