429,688
עריכות
(תיקנתי אי דיוק בדרך לחישוב הזווית של של מספר מרוכב) |
Matanyabot (שיחה | תרומות) מ (בוט החלפות: תהיה, לחלופין) |
||
==הצגה קוטבית והמישור המרוכב==
אפשר להתאים את המספר המרוכב <math>\ x+yi</math> לקואורדינטה הקרטזית <math>\ (x,y)</math> במישור <math>\ \mathbb{R}^2</math>. את המישור אפשר לתאר גם באמצעות [[קואורדינטות פולריות]], הכוללות, עבור כל נקודה, את ה[[מרחק]] שלה מראשית הצירים ואת ה[[זווית]] בין הקטע המחבר את ראשית הצירים לנקודה, לבין ציר ה-<math>\ x</math>. הערך המוחלט של מספר מרוכב מייצג את מרחקו מראשית הצירים (ע"פ [[משפט פיתגורס]]), ואילו הזווית ניתנת לחישוב באמצעות פונקציית ה[[טנגנס]]: <math>\ \tan\theta=\frac{y}{x}</math> עבור מספרים שמרוכבים שנמצאים ברביע הראשון או הרביעי (כלומר re(z)>0 ), ואילו עבור מספרים שנמצאים ברביע השני או השלישי ( re(z)<0 ) הזווית
עבור מספרים מרוכבים עם חלק ממשי אפסי וחלק מדומה חיובי הארגומנט יהיה <math>\pi:2</math> ועבור מספרים מרוכבים עם חלק ממשי אפסי וחלק מדומה שלילי הארגומנט יהיה <math>-(\pi:2)</math>.
עבור 0 הזווית אינה מוגדרת (או
לזווית נקרא '''ארגומנט''' של המספר המרוכב. נשים לב שאין למספר מרוכב ארגומנט יחיד - מרגע שנמצא ארגומנט, כל זווית אחרת כך שהפרשן של שתי הזוויות הוא <math>\ 2\pi</math> גם היא ארגומנט. לכן נהוג לרוב כאשר מדברים על '''ה'''ארגומנט של מספר מרוכב לבחור את הזווית ששייכת לקטע <math>\ (-\pi,\pi]</math>.
|