הבדלים בין גרסאות בדף "מספר אלגברי"

נוספו 35 בתים ,  לפני 5 שנים
מ
אין תקציר עריכה
(ביטול גרסה 15072123 של 77.126.18.9 (שיחה) הנקודה היא שההגדרות שקולות)
מ
'''מספר אלגברי''' הוא [[מספר מרוכב]] המהווה [[שורש (של פונקציה)|שורש]] של [[פולינום]] בעל מקדמים [[מספר רציונלי|רציונליים]] (או [[מספר שלם|שלמים]], אין הבדל). בפרט, כל מספר רציונלי q הוא אלגברי, משום שהוא פותר את המשוואה <math>\ x-q=0</math>. מספר (מרוכב) שאינו אלגברי נקרא [[מספר טרנסצנדנטי]].
 
אוסף כל המספרים האלגבריים מהווה [[שדה (מבנה אלגברי)|שדה]], הנקרא [[שדה המספרים האלגבריים]]. אוסף המספרים האלגבריים הוא [[קבוצה בת מנייה|בן מנייה]], בעוד שה[[משלים (תורת הקבוצות)|משלים]] לו אינו בן מנייה. [[הוכחת האי-מנייה הראשונה של קנטור|תכונה זו הוכחה]] על ידי [[גאורג קנטור]]. במובן זה ישנם הרבה יותר מספרים שאינם אלגבריים מאשר מספרים אלגבריים, למרות שבאופן מעשי קשה ביותר להוכיח שמספר נתון (כגון [[e]] או [[פאי]]) אינו אלגברי (להוכחות ראו [[טרנסצנדנטיות של e]] ו[[משפט לינדמן]]).