הצגה ליניארית – הבדלי גרסאות

נוספו 14 בתים ,  לפני 6 שנים
(עריכה והרחבה)
 
== הצגות של חבורה סופית ==
כל הצגה של חבורה סופית שקולה להצגה על מרחב מממד סופי. אם G היא חבורה סופית ומתקיים תנאי משפט משקה, ניתן לרשום (לפי [[משפט ודרברן-ארטין]]) את חוג החבורה כסכום ישר של [[חוג מטריצות|אלגברות מטריצות]] מעל [[חוג עם חילוק|חוגים על חילוק]]: <math>F[G]=\overset { t }{ \underset { i=1 }{ \oplus } } {M_{n_i}(D_i)}</math>. לכל חוג מהצורה <math>M_{n_i}(D_i)</math> מודול אי פריק יחיד (אך המודולים ברכיבים השונים '''אינם''' איזומורפיים). מספר המחוברים <math>t</math> הוא מספר המודולים הפשוטים, והוא גם שווה לממד [[מרכז (אלגברה)|מרכז]] החבורה <math>Z(F[G])</math>, השווה למספר [[מחלקת צמידות|מחלקות הצמידות]] של החבורה. את הערכים של הקרקטרים השונים, המחושבים בכל מחלקות הצמידות של החבורה, אפשר לארגן במטריצה ריבועית, הנקראת '''[[טבלת קרקטרים|טבלת הקרקטרים]]''' של החבורה.
 
הממד של כל הצגה אי-פריקה מחלק את סדר החבורה. יתרה מזו, לפי [[משפט איטו]], אם A תת-חבורה אבלית [[תת-חבורה נורמלית|נורמלית]], אז הממד של הצגה אי-פריקה מחלק את ה[[אינדקס (תורת החבורות)|אינדקס]] <math>\ [G:A]</math>. סכום ריבועי הממדים של ההצגות האי-פריקות שווה לסדר החבורה.