תבנית קילינג – הבדלי גרסאות

בעזרת תבנית קילינג אפשר לנסח [[אם ורק אם|תנאי הכרחי ומספיק]] להיותה של [[אלגברת לי]] [[אלגברת לי פשוטה למחצה|פשוטה למחצה]]:
 
'''משפט:''' תהי אלגברת לי <math>L</math> מעל [[שדה סגור אלגברית]] ובעל [[מאפיין של שדה|מאפיין]] אפס. אז <math>L</math> היא פשוטה למחצה [[אם ורק אם]] תבנית קילינג שלה [[תבנית בילינארית|רגולרית]], כלומר: הרדיקל שלה אפס <math>R\operatorname{Rad}(k)=0</math>.
 
'''הוכחה:''' נניח ש-<math>L</math> פשוטה למחצה. נוכיח כי <math>\operatorname{Rad}(k)</math> אידאל פתיר, ולכן אפס. יהיו <math>x \in \operatorname{Rad}(k) , y \in L</math>, מתקיים <math>\operatorname{Tr}(\operatorname{ad}x \cdot \operatorname{ad}y)=0</math>. זה נכון בפרט ל-<math>y \in [\operatorname{Rad}(k),\operatorname{Rad}(k)] \subseteq L</math>, ולכן לפי [[קריטריון קרטן]] <math>\operatorname{Rad}(k)</math> פתיר.