הבדלים בין גרסאות בדף "שדה המספרים המרוכבים"

הגהה
מ
(הגהה)
במתמטיקה ויישומיה, '''שדה המספרים המרוכבים''' הוא ה[[שדה (מבנה אלגברי)|שדה]] שאבריו הם ה[[מספר מרוכב|מספרים המרוכבים]],. כלומר, מספרים מןשניתן הצורהלהציג בצורה <math>\ a+bi</math>, כאשר a,b הם [[מספר ממשי|ממשיים]], ו-<math>\ i</math> היא '''היחידה המרוכבת''', המקיימת <math>\ i^2=-1</math>. המספרים המרוכבים מתאימים באופן טבעי לנקודות ב[[המישור המרוכב|מישור המרוכב]].
 
שדה המספרים המרוכבים, שאותו מקובל לסמן באות <math>\ \mathbb{C}</math>, מכיל את [[שדה המספרים הממשיים]] <math>\ \mathbb{R}</math> - ומהווה [[הרחבת שדות|הרחבה]] מ[[ממד (אלגברה לינארית)|ממד]] 2 מעליו. שדה המרוכבים מתקבל מסיפוח השורש של מינוס אחת לשדה הממשיים, כלומר, <math>\ \mathbb{C}</math> איזומורפי ל[[חוג מנה|חוג המנה]] <math>\ \mathbb{R}[x]/\left(x^2+1\right)</math>.
 
==הצגה קוטבית והמישור המרוכב==
אפשר להתאים את המספר המרוכב <math>\ x+yi</math> לקואורדינטה הקרטזית <math>\ (x,y)</math> במישור <math>\ \mathbb{R}^2</math>. את המישור אפשר לתאר גם באמצעות [[קואורדינטות פולריות]], הכוללות, עבור כל נקודה, את ה[[מרחק]] שלה מראשית הצירים ואת ה[[זווית]] בין הקטע המחבר את ראשית הצירים לנקודה, לבין ציר ה-<math>\ x</math>. הערך המוחלט של מספר מרוכב מייצג את מרחקו מראשית הצירים (ע"פ [[משפט פיתגורס]]), ואילו הזווית ניתנת לחישוב באמצעות פונקציית ה[[טנגנס]]: <math>\tan(\theta) = \frac{y}{x}</math> עבור מספרים שמרוכביםמרוכבים שנמצאים ברביע הראשון או הרביעי (כלומר <math>\ \mathrm{Re}(z) > 0</math>), ואילו עבור מספרים שנמצאים ברביע השני או השלישי (<math>\ \mathrm{Re}(z) < 0</math>) הזווית תהיה <math>\pi - \arctan\left(\frac{y}{x}\right)</math> (שכן לפונקציית tan יש מחזור <math>\pi</math>).
 
עבור מספרים מרוכבים עם חלק ממשי אפסי וחלק מדומה חיובי הארגומנט יהיה <math>\pi:2</math> ועבור מספרים מרוכבים עם חלק ממשי אפסי וחלק מדומה שלילי הארגומנט יהיה <math>-(\pi:2)</math>.
259

עריכות