מישור (גאומטריה): הבדלי גרסאות

: <math>\ ax+by+cz+d=0</math>,
כאשר <math>\ a</math>, <math>\ b</math>, <math>\ c</math> ו-<math>\ d</math> הם [[מספר ממשי|מספרים ממשיים]] ולא כל המקדמים שווים לאפס. אפשר לכתוב גם <math>\ \mathbf{n}\cdot\mathbf{x} +d = 0</math>, כאשר <math>\ \mathbf{n} </math> הוא הווקטור <math>\mathbf{n} = (a,b,c)</math> (שלמעשה מהווה ה[[נורמל]] של המישור) ו-<math>\ \mathbf{x} </math> הוא הווקטור <math>\ (x,y,z)</math>. אם <math>\mathbf{x}_0 = (x_0,y_0,z_0)</math> היא נקודה על המישור ניתן להציגו על ידי המשוואה <math>\mathbf{n} \cdot (\mathbf{x} - \mathbf{x}_0)=0</math> או בכתיב מפורש לפי [[קואורדינטות]]:
: <math>S = \left\{ (x,y,z) \in \mathbb{R}^3 \mid a \cdot (x-x_0) + b \cdot (y-y_0) + c \cdot (z-z_0) = 0 \right\}</math>.
במילים אחרות, המישור <math>S</math> הוא אוסףקבוצת כל פתרונות המשוואה
: <math>a \cdot (x-x_0) + b \cdot (y-y_0) + c \cdot (z-z_0) = 0</math>.
המישור <math>S</math> הוא [[תת-מרחב וקטורי]] אם ורק אם הוא עובר דרך הראשית (כלומר: <math>\boldsymbol{0}=(0,0,0)</math> הוא פיתרון של מערכת המשוואות המגדירה את המישור).
 
===הצגה פרמטרית===