הבדלים בין גרסאות בדף "משולש ישר-זווית"

אין תקציר עריכה
(שינוי קישור מקישור לאתר שאינו קיים יותר לאתר אחר שמבצע פעולה דומה.)
 
* משולש ישר-זווית מקיים את '''[[משפט פיתגורס]]''': סכום ה[[שטח]]ים של [[ריבוע]]ים הבנויים על הניצבים, שווה לשטח הריבוע הבנוי על היתר.
* ה[[תיכון (גאומטריה)|תיכון]] ליתר שווה למחצית היתרמהיתר, ומכאן שהתיכון מחלק את המשולש לשני [[משולש שווה-שוקיים|משולשים שווי-שוקיים]].
* משולש ישר-זווית מקיים את [[משפט תאלס#המשפט השני|משפט תאלס]]: אם משולש ישר-זווית [[מעגל חוסם|חסום במעגל]], אז היתר מתלכד עם [[קוטר]] המעגל. התיכון ליתר הוא [[רדיוס]] במעגל החוסם.
* ה[[גובה (גאומטריה)|גובה]] ליתר מחלק את המשולש לשני משולשים ה[[דמיון משולשים|דומים]] למשולש המקורי (ולכן גם דומים זה לזה). מכאן נובע [[משפט פיתגורס#אוקלידס|משפט אוקלידס]] - אורך הניצב הוא ה[[ממוצע גאומטרי|ממוצע הגאומטרי]] של היתר ושל היטלו של הניצב על היתר.
משתמש אלמוני