הבדלים בין גרסאות בדף "גאומטריה אוקלידית"

מ
הגהה
(←‏פתיח: הגהה)
מ (הגהה)
במשך יותר מאלפיים שנה נקראה הגאומטריה האוקלידית פשוט "גאומטריה", משום שהייתה ה[[גאומטריה]] היחידה. ניסיונות [[הוכחה|להוכיח]] את [[אקסיומת המקבילים]] הביאו ב{{ה|מאה ה-19}} לפיתוחן של גאומטריות אלטרנטיביות, שאינן מקבלות את האקסיומה הזו, והן קרויות [[גאומטריה לא-אוקלידית|גאומטריות לא אוקלידיות]].
 
גאומטריה אוקלידית נמנית עם [[מתמטיקה#ענפי המתמטיקה|ענפי המתמטיקה]] המעטים הנלמדים ב[[בית ספר יסודי|בית הספר היסודי]] ו[[בית ספר תיכון|התיכון]]. במסגרת זו יש המבחינים, משיקולים [[תורת ההוראה|דידקטי]]ים, בין '''גאומטריית המישור''' (או '''הנדסת המישור'''), העוסקת בגופים [[מישור (גאומטריה)|מישור]]יים בלבד, כגון [[משולש]] ו[[מעגל]], ובין '''גאומטריית המרחב''' (או '''הנדסת המרחב'''), העוסקת בגופים [[מרחב תלת-ממדי|תלת-ממדיים]], כגון [[פירמידה (גאומטריה)|פירמידה]] , [[קובייה]] ו[[כדור (גאומטריה)|כדור]].
 
==הנחות==
אוקלידס, שנחשב לאבי הגאומטריה בזכות [[ספר|ספרו]]ו "[[יסודות (ספר)|יסודות]]", ביסס את הגאומטריה המישורית על שני מושגי יסוד, ה[[נקודה (גאומטריה)|נקודה]], וה[[ישר]], המוגדרים באופן מצומצם, ומקבלים את משמעותם והתכונות שלהם מהנחות היסוד שהם מקיימים והקשר שלהם למושגים אחרים שאוקלידס מגדיר, ביניהם המעגל והזווית והמישור. הנקודה הישר המעגל והזווית מקיימים יחד איתם חמש הנחות:
#אפשר להעביר [[קטע (מתמטיקה)|קטע]] ישר בין שתי נקודות.
#אפשר להמשיך קטע ישר ללא גבול.
#השלם גדול מהחלק.
 
ההנחה החמישית, המכונה "אקסיומת המקבילים", נראתה למתמטיקאים לאורך ההיסטוריה לא מובנת מאליה, והם ניסו למצוא דרך להוכיח אותה באמצעות ההנחות שלפניה. אולם במאה ה-19 הוכח שהיא בלתי ניתנת להוכחה, על ידי יצירת [[גאומטריה היפרבולית|הגאומטריה ההיפרבולית]] שבה כל ארבע האקסיומות הראשונות נכונות אך החמישית איננה נכונה. תחום זה של הגאומטריה נקרא [[גאומטריה לא-אוקלידית]]. והגיאומטריהוהגאומטריה שהיתהשהייתה עד כה היחידה קיבלה את השם אוקלידית.
 
המוסכמות וההנחות שהציע אוקלידס אינן מספיקות לביסוס של הגאומטריה במידת הקפדנות המקובלת היום; במקומן מקובל להשתמש ב[[מערכת האקסיומות של הילברט]] שהציע [[דויד הילברט]] בסוף המאה ה-19.
{{מיזמים|ויקיספר=מתמטיקה תיכונית/גאומטריה|שם ויקיספר=גאומטריה}}
* [http://kaye7.school.org.il/geometry_theorems.htm הדגמה ויזואלית של המשפטים בגאומטריה אוקלידית (הנדסת המישור) לבחינת הבגרות במתמטיקה, לפי רשימת משרד החינוך] – אתר המרכז לתכנון לימודים, מכללת קיי
 
 
[[קטגוריה:גאומטריה|אוקלידית]]