42,429
עריכות
Yoelpiccolo31 (שיחה | תרומות) אין תקציר עריכה תגיות: עריכה ממכשיר נייד עריכה דרך האתר הנייד |
מ (שחזור שטויות) |
||
ב[[מתמטיקה]], כאשר על [[קבוצה (מתמטיקה)|קבוצה]] מוגדרת [[פעולה בינארית]] בין איבריה, '''איבר יחידה''' (או '''איבר נייטרלי''' או '''איבר אדיש''')
ב[[מבנה אלגברי|מבנים אלגבריים]] רבים, כגון [[חבורה (מבנה אלגברי)|חבורה]], [[חוג (מבנה אלגברי)|חוג]] ו[[שדה (מבנה אלגברי)|שדה]], קיומו של איבר יחידה הוא אחד המאפיינים של המבנה האלגברי.▼
כאשר נתונים קבוצה <math>\ S</math> ופעולה בינארית, שנסמנה <math>\ \star</math>, המוגדרת על איבריה, אזי:
נניח כי<math>e_R,e_L</math> איבר יחידה ימיני ואיבר יחידה שמאלי בהתאמה, אז <math>e_L = e_L \star e_R = e_R</math> ומכאן שאם קיימים הן איבר יחידה שמאלי והן איבר יחידה ימני, אז הם אותו איבר.
▲ב[[מבנה אלגברי|מבנים אלגבריים]] רבים, כגון [[חבורה (מבנה אלגברי)|חבורה]], [[חוג (מבנה אלגברי)|חוג]] ו[[שדה (מבנה אלגברי)|שדה]], קיומו של איבר יחידה הוא אחד המאפיינים של המבנה האלגברי.
== דוגמאות ==▼
* בפעולת ה[[חיבור]] המקובלת, איבר היחידה הוא [[0 (מספר)|0]], משום שלכל מספר a מתקיים: <math>a+0 = 0+a = a</math>. איבר יחידה זה קרוי [[איבר האפס]].
* בפעולת ה[[כפל]] המקובלת, איבר היחידה הוא [[1 (מספר)|1]], משום שלכל מספר a מתקיים: <math>a \times 1 = 1 \times a = a</math>.
* בפעולת [[איחוד (מתמטיקה)|איחוד]] בין [[קבוצה (מתמטיקה)|קבוצות]], איבר היחידה הוא [[הקבוצה הריקה]].
* בהרכבת [[פונקציה|פונקציות]], איבר היחידה הוא [[פונקציית הזהות]].
[[קטגוריה:אלגברה]]
|