העתקה ליניארית – הבדלי גרסאות

תוכן שנמחק תוכן שנוסף
←‏הגדרה: הרחבה
שורה 21:
== דוגמאות ==
* אם <math> \ A</math> היא [[מטריצה]] מסדר <math> \ m \times n </math>, אז <math> \ A</math> מגדירה העתקה ליניארית <math>T_A : \mathbb{R}^n \to \mathbb{R}^m</math> מ-<math> \mathbb R ^n </math> ל-<math> \mathbb R ^m </math> כאשר היא פועלת על וקטורי עמודה ב <math> \mathbb R ^n </math> על ידי [[כפל מטריצות]] מימין: <math>T_A(\vec{x}) = A\vec{x}</math> זוהי דוגמה חשובה ושימושית ביותר, כיוון שניתן לייצג כל העתקה ליניארית בין מרחבים מ[[ממד (אלגברה ליניארית)|ממד]] סופי בדרך זו.
* טרנספורמציית האפס <math>\boldsymbol{0}:V \to W</math> (פונקציה המתאימה לכל איבר בתחום את [[איבר האפס|וקטור האפס]] בטווח) ו[[פונקציית הזהות|טרנספורמציית הזהות]] <math>\operatorname{Id}: V \to V</math> (פונקציה המתאימה לכל איבר בתחום את עצמו) הן טרנספורמציות ליניאריות. בפרט, אם <math>V=\mathbb{R}^n, W=\mathbb{R}^m</math> אז את טרנספורמציית האפס ניתן לייצג כ-<math>T_A</math> כאשר <math>A</math> היא מטריצת האפס (מטריצה בגודל המתאים שכולה אפסים), ואת טרנספורמציית הזהות <math>\operatorname{Id}:\mathbb{R}^n \to \mathbb{R}^n</math> ניתן לייצג כ-<math>T_A</math> על ידי <math>A=I_n</math> כאשר <math>I_n</math> היא [[מטריצת היחידה]] מסדר n (כלומר: בגודל <math>n \times n</math>).
* ההעתקה <math>T_A : \mathbb{R}^2 \to \mathbb{R}^2</math> עם <math>A = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}</math> היא העתקה ליניארית המותחת את ציר ה-x בעוד את ציר ה-y היא משאירה ללא שינוי. נבטא אותה במפורש: <math display="block">\begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 x \\ y \end{bmatrix}</math> ולכן <math>T_A(x,y) = (2x,y)</math>. קל לבדוק ישירות שהיא אכן ליניארית.
* טרנספורמציות סיבוב ושיקוף הן טרנספורמציות ליניאריות. לדוגמה, ב-<math> \mathbb R ^2</math>, הטרנספורמציה המשקפת כל וקטור יחסית לציר ה <math>\,x</math> היא טרנספורמצייה ליניארית.
* [[נגזרת|גזירה]] היא העתקה ליניארית ממרחב הפונקציות הגזירות למרחב הפונקציות (מרחבים מ[[ממד (אלגברה ליניארית)|ממד]] אינסופי).