צירוף ליניארי – הבדלי גרסאות

הוסרו 146 בתים ,  לפני 3 שנים
עריכה
מ (הוספת פרק קישורים חיצוניים + תבנית:MathWorld (בערכים בהם אין קישורים חיצוניים) (תג) (דיון))
(עריכה)
ב[[אלגברה ליניארית]], '''צירוף ליניארי''' הוא סכום של מספר '''סופי''' של [[וקטור (אלגברה)|וקטורים]] שכל אחד מהם מוכפל ב[[סקלר (מתמטיקה)|סקלר]]. בגלל סגירותו של ה[[מרחב וקטורי|מרחב הווקטורי]] ביחס לחיבור וכפל בסקלר, הצירוף הליניארי אף הוא וקטור השייך לאותו מרחב וקטורי. בהינתן קבוצה מתאימה של וקטורים - [[קבוצה פורשת]] - ניתן לכתוב כל וקטור במרחב כצירוף ליניארי של איברים מתוך הקבוצה.
 
בהינתן קבוצה מתאימה של וקטורים - [[קבוצה פורשת]] - ניתן לכתוב כל וקטור במרחב כצירוף ליניארי של איברים מתוך הקבוצה.
 
מבחינה פורמלית, צירוף ליניארי מוגדר כך. בהינתן סדרה <math>\,v_1,v_2,...,v_k</math> של וקטורים במרחב, וסדרה <math>\,\alpha_1,\alpha_2,...,\alpha_k</math> של סקלרים, נקרא לביטוי
::<math>\,\alpha_1 v_1+\alpha_2 v_2+...+\alpha_k v_k</math>
 
צירוף ליניארי של הווקטורים. בקיצור ניתן לכתוב <math>\sum_{i=1}^{k}\alpha_i v_i</math>
 
או בקיצור: <math>\sum_{i=1}^{k}\alpha_i v_i</math>.
 
קבוצה תיקרא [[תלות ליניארית|תלויה ליניארית]] אם קיים בה וקטור שהוא צירוף ליניארי של וקטורים אחרים מהקבוצה. או באופן שקול, קבוצה היא תלויה ליניארית אם קיים צירוף ליניארי לא טריוויאלי של איבריה (לא כל הסקלרים אפס) ששווה לווקטור האפס.
 
בהתאם לכך וקטור האפס יהיה תמיד צירוף ליניארי של כל קבוצת וקטורים, וכשהוא יינתן בתוך קבוצה אזי הקבוצה תהיה תלויה ליניארית.-