הצגה ליניארית – הבדלי גרסאות

תוכן שנמחק תוכן שנוסף
קצרמר
אין תקציר עריכה
שורה 5:
== שקילות של הצגות והצגות אי-פריקות ==
 
באופן פורמלי, הצגה היא הומומורפיזם <math>\ G \rightarrow \mathoperatoroperatorname{GL}(V)</math>, כאשר V הוא מרחב וקטורי מעל שדה F, ו- <math>\ \mathoperatoroperatorname{GL}(V)</math> היא חבורת ההעתקות הליניאריות ההפיכות של המרחב. כאשר V הוא מרחב מ[[ממד (אלגברה לינארית)|ממד]] סופי n, אפשר לזהות חבורה זו עם [[חבורת המטריצות ההפיכות]] <math>\ \mathoperatoroperatorname{GL}_n(F)</math>, ואז n הוא '''ממד ההצגה'''.
 
מהצגה נתונה אפשר ליצור '''הצגות שקולות''', על-ידי הצמדה בהעתקה לינארית קבועה; דהיינו, אם <math>\ \pi : G \rightarrow \mathoperatoroperatorname{GL}(V)</math> היא הומומורפיזם ו- A העקתה הפיכה, אז גם הפונקציה <math>\ g \mapsto A \pi(g) A^{-1}</math> היא הצגה, השקולה להצגה המקורית.
 
כאשר נתונות שתי הצגות, על מרחבים V ו- W, אפשר ליצור מהן הצגה חדשה, על ה[[סכום ישר|סכום הישר]] <math>\ V \oplus W</math>, בדרך של בניית מטריצות בלוקים: <math>\ g \mapsto \begin{array}{cc} \pi_1(g) & 0 \\ 0 & \pi_2(g)\end{array}</math>. הצגה כזו, וכל הצגה שקולה לה, נקראת '''הצגה פריקה'''. הצגה שלא ניתן לפרק (על-ידי הצמדה) באופן כזה, נקראת '''הצגה אי-פריקה'''. כל ההצגות האי-פריקות של [[חבורה אבלית]] סופית הן חד-ממדיות.
שורה 15:
== הקרקטר של הצגה מממד סופי ==
 
אם <math>\ \pi : G \rightarrow \mathoperatoroperatorname{GL}_n(F)</math> היא הצגה ממימד סופי, אז הפונקציה <math>\ \chi(g) = \operatorname{tr}(\pi(g))</math> המוגדרת לפי חישוב ה[[עקבה (אלגברה לינארית)|עקבה]] של המטריצות המתקבלות מן ההצגה, היא ה'''קרקטר''' של ההצגה. העקבה אינה משתנה בהצמדה, ולכן להצגות שקולות יש אותה עקבה. הקרקטר של הצגה חד-ממדית שווה להצגה עצמה.
 
בחבורה סופית (ובאופן כללי יותר, גם ב[[חבורה קומפקטית]]), גם ההיפך נכון: מן הקרקטר של הצגה, אפשר לשחזר את ההצגה כולה ([[עד כדי (מתמטיקה)|עד כדי]] שקילות).