הבדלים בין גרסאות בדף "עקביות (לוגיקה)"

נוספו 52 בתים ,  לפני 11 חודשים
סידור
(פיסוק)
(סידור)
ב[[מתמטיקה]] וב[[לוגיקה]], '''עקביות''' (או '''קונסיסטנטיות''', '''קוהרנטיות''') של מערכת מסוימת פירושה שמערכת זו היא נטולת [[סתירה (לוגיקה)|סתירות]]. ב[[לוגיקה מתמטית]], [[תורה (לוגיקה מתמטית)|תורה]] '''עקבית''' היא כזו שלא נובעת ממנה [[פסוק (לוגיקה מתמטית)|טענה]] והיפוכה. בתורות לא עקביות אפשר להוכיח כל טענה (משום שמהנחות שקריות נובעת כל מסקנה שהיא), ולכן נחשבת עקביות למעלה הכרחית בכל תורה ראויה.
 
כדי להוכיח שמערכת היא עקבית, מספיק למצוא [[מודל (לוגיקה מתמטית)|מודל]] שמקיים את כל ה[[אקסיומה|אקסיומות]] של המערכת. מודל עבור תורה <math>A</math> הנבנה במסגרת של תורה <math>B</math> מוכיח '''עקביות יחסית''' - אם <math>B</math> עקבית, אז גם <math>A</math> כזו. מודלים כאלו ידועים עבור [[גאומטריה|גאומטריות]] שונות (למשל, שתי הגרסאות ה[[גאומטריה לא אוקלידית|לא אוקלידיות]] של גאומטרית המישור הן עקביות ביחס לגאומטרית המישור האוקלידית), וגם עבור מערכות אקסיומטיות שונות ל[[תורת הקבוצות האקסיומטית|תורת הקבוצות]].
 
לכל מערכת אקסיומות עקבית יש מודל ([[משפט השלמות של גדל]], 1930). ישנן תורות שבמסגרתן לא ניתן להראות עקביות. דוגמה לכך היא [[תורת המספרים]]. כדי להוכיח עקביות של מערכות כאלה יש להפעיל כלים מתמטיים סבוכים יותר ולהסתמך על תורות אחרות. [[משפט האי שלמות השני]] של גדל קובע שלא ניתן להוכיח את העקביות של תורה [[אריתמטיקה|אריתמטית]] [[תורה אפקטיבית|אפקטיבית]] (שהיא עקבית), במסגרת התורה עצמה.
4,450

עריכות