כפל – הבדלי גרסאות

הוסרו 3 בתים ,  לפני שנה
====מערכות מספרים אחרות====
* [[חוג המספרים השלמים]]: נשתמש ב[[מספר שלם#בנייה פורמלית|בנייה פורמלית של המספרים השלמים]], כמחלקות שקילות של היחס <math>(a,b)\sim(c,d)\Leftrightarrow a+d=b+c</math> על הקבוצה <math>\N\times\N</math>, כאשר הכפל מוגדר <math>[(a,b)]\cdot[(c,d)]:=[(ac+bd,ad+bc)]</math>, והחיבור מוגדר <math>[(a,b)]+[(c,d)]=[(a+c,b+d)]</math>:
:* [[אסוציאטיביות]]: <math>\begin{align}&[(a,b)]\cdot([(c,d)]\cdot[(e,f)])&=[(a,b)]\cdot[(ce+df,cf+de)]=[(ace+adf+bcf+bde,acf+ade+bce+bdf)]=[(ac+bd,ad+bc)]\cdot[(e,f)]\\&=([(a,b)]\cdot[(c,d)])\cdot[(e,f)]\end{align}</math>
&=([(a,b)]\cdot[(c,d)])\cdot[(e,f)]\end{align}</math>
:* [[קומוטטיביות]]: <math>[(a,b)]\cdot[(c,d)]=[(ac+bd,ad+bc)]=[(ca+db,da+cb)]=[(c,d)]\cdot[(a,b)]</math>
:* איבר יחידה: <math>[(a,b)]\cdot1=[(a,b)]\cdot[(1,0)]=[(a+0\cdot b,a\cdot0+b)]=[(a,b)]</math>
:* חוק הפילוג: <math>\begin{align}&[(a,b)]\cdot([(c,d)]+[(e,f)])&=[(a,b)]\cdot[(c+e,d+f)]=[(ac+ae+bd+bf,ad+af+bc+be)]=[(ac+bd,ad+bc)]+[(ae+bf,af+be)]\\&=[(a,b)]\cdot[(c,d)]+[(a,b)]\cdot[(e,f)]\end{align}</math>
&=[(a,b)]\cdot[(c,d)]+[(a,b)]\cdot[(e,f)]\end{align}</math>
:* כפל ב{{משמאל לימין|-1}}: <math>[(a,b)]\cdot[(0,1)]=[(b,a)]=-[(a,b)]</math>
:* אין הופכי בשלמים.
:* איבר יחידה: <math>[(a,b)]\cdot[(1,1)]=[(a,b)]</math>
:* חוק הצמצום: נשתמש בכך שיש הופכי (יוכח בהמשך) ונקבל: <math>xy=xz\Rightarrow x^{-1}xy=x^{-1}xz\Rightarrow y=z</math>.
:* חוק הפילוג: <math>\begin{align}&[(a,b)]\cdot([(c,d)]+[(e,f)])&=[(a,b)]\cdot[(cf+de,df)]=[(acf+ade,bdf)]=[(acbf+adbe,bdbf)]=[(ac,bd)]+[(ae,bf)]\\&=[(a,b)]\cdot[(c,d)]+[(a,b)]\cdot[(e,f)]\end{align}</math>
&=[(a,b)]\cdot[(c,d)]+[(a,b)]\cdot[(e,f)]\end{align}</math>
:* כפל ב{{משמאל לימין|-1}}: <math>[(a,b)]\cdot[(-1,1)]=[(-a,b)]=-[(a,b)]</math>
:* [[מספר הופכי]]: <math>[(a,b)]\cdot[(b,a)]=[(ab,ba)]=[(1,1)]=1</math>
884

עריכות