צירוף ליניארי – הבדלי גרסאות

תיקנתי שגיאת כתיב והוספתי פיסוק
(תיקנתי שגיאת כתיב והוספתי פיסוק)
מבחינה פורמלית, צירוף ליניארי מוגדר כך. בהינתן סדרה <math>\,v_1,v_2,...,v_k</math> של וקטורים במרחב, וסדרה <math>\,\alpha_1,\alpha_2,...,\alpha_k</math> של סקלרים, נקרא לביטוי:<math>\,\alpha_1 v_1+\alpha_2 v_2+...+\alpha_k v_k</math> צירוף ליניארי של הווקטורים. או בקיצור: <math>\sum_{i=1}^{k}\alpha_i v_i</math>.
 
קבוצה זו תהיה [[תלות ליניארית|תלויה ליניארית]] אם קיים בה וקטור שהוא צירוף ליניארי של וקטורים אחרים מהקבוצה. או באופן שקול, קבוצה היא תלויה ליניארית אם קיים צירוף ליניארי לא טריוויאלי של איבריה (לא כל הסקלרים אפס) ששווה לווקטור האפס. אם קיים רק הצירוף הלינארי הטריוויאלי, הקבוצה הלתיבלתי תלויה ליניארית.
 
בהתאם לכך וקטור האפס יהיה תמיד צירוף ליניארי של כל קבוצת וקטורים, וכשהוא יינתן בתוך קבוצה אזי הקבוצה תהיה תלויה ליניארית.
משתמש אלמוני