הבדלים בין גרסאות בדף "אינטגרל לא אמיתי"

אין שינוי בגודל ,  לפני 3 חודשים
(←‏מבחן ההשוואה: - חסר מידע עבור הווריאציות השונות למבחני ההשוואה)
תהא <math>f\,</math> פונקציה המוגדרת בקטע <math>[a,b)\,</math> ובלתי חסומה שם. אם <math>f\,</math> [[אינטגרל|אינטגרבילית רימן]] בכל קטע סגור החלקי לקטע <math>[a,b)\,</math> ואם קיים הגבול <math>\lim_{t \to b^{-}} \int_{a}^{t} f(x) \,\mathrm{d}x\,</math>, אז נאמר כי <math>f\,</math> '''אינטגרבילית במובן המוכלל''' בקטע <math>[a,b)\,</math> והגבול הנ"ל יקרא האינטגרל המוכלל או האינטגרל הלא אמיתי של <math>f\,</math> בקטע <math>[a,b)\,</math> וסימונו יהיה <math>\textstyle \int_{a}^{b} f(x) \,\mathrm{d}x\,</math>. כמו כן, נאמר גם כי אינטגרל זה '''מתכנס'''. אחרת, אם גבול זה לא קיים, נאמר שהוא '''מתבדר'''.
 
'''דוגמה:''' יהי <math>0<a<\infty\,</math>. חישוב האינטגרל הרחק מאפס מראה כי <math>\int_{0}^{a} {{\,\mathrm{d}x} \over {x^{t}}}</math> מתכנס אם ורק אם <math>t<>1\,</math>.
====אינטגרביליות בהחלט====
משתמש אלמוני