הבדלים בין גרסאות בדף "סגור (טופולוגיה)"

מ
דוגמאות ושינוי קל
מ (BHEUS)
מ (דוגמאות ושינוי קל)
*<math>\!\, \mbox{Cl}(S)=S\cup S'</math>, כאשר <math>\!\, S'</math> היא קבוצת כל [[נקודת הצטברות|נקודות ההצטברות]] של <math>\!\, S</math>.
* הגדרה באמצעות ה[[פנים (טופולוגיה)|פנים]] של ה[[משלים (תורת הקבוצות)|משלים]] של הקבוצה: <math>\!\, \mbox{Cl}(A)=\left(\mbox{Int}(A^C)\right)^C</math>.
 
==דוגמאות==
* הסגור של [[קטע פתוח|הקטע הפתוח]] <math> \ (a,b) </math> הוא הקטע הסגור <math> \ [a,b] </math>.
* הסגור של [[מספר רציונאלי|קבוצת המספרים הרציונאלים]] <math> \mathbb{Q}</math> הוא הישר הממשי כולו <math> \mathbb{R}</math>.
 
==תכונות הנוגעות לסגור==
נשים לב שרבות מתכונות אלו מזכירות את תכונות [[פנים (טופולוגיה)|הפנים]]
 
*כל [[קבוצה סגורה]] שווה לסגור שלה: <math>\!\, A=\mbox{Cl}(A)</math>. בפרט הסגור הוא קבוצה סגורה ולכן <math>\!\, \mbox{Cl}(A)=\mbox{Cl}\left(\mbox{Cl}(A)\right)</math>.
*<math>\!\, \mbox{Cl}\left(A\cap B\right)\subseteq \mbox{Cl}(A)\cap \mbox{Cl}(B)</math>.
*<math>\!\, \mbox{Cl}\left(A\cup B\right)= \mbox{Cl}(A)\cup \mbox{Cl}(B)</math>.
*<math>\!\, f</math> היא [[רציפות (טופולוגיה)|פונקציה רציפה]] אם ורק אם לכל <math>\!\, A</math> בתחום שלה מתקיים <math>\!\, f\left(\mbox{Cl}(A)\right)\subseteq \mbox{Cl}\left(f(A)\right)</math>. בפרט, הסגור של קבוצה קשירה הוא קשיר.
* אם <math>\!\, A</math> [[קשירות (טופולוגיה)|קבוצה קשירה]], לכל <math>\!\, A\subseteq B\subseteq \mbox{Cl}(A)</math> מתקיים שגם <math>\!\, B</math> קבוצה קשירה.
*קבוצה <math>\!\, A</math> במרחב <math>\!\, X</math> המקיימת <math>\!\, \mbox{Cl}(A)=X</math> נקראת [[קבוצה צפופה]].
*קבוצה <math>\!\, A</math> במרחב <math>\!\, X</math> המקיימת <math>\!\, \mbox{Int}\left(\mbox{Cl}(A)\right)=\emptyset</math> נקראת [[קבוצה דלילה]].
 
נשים לב שרבות מתכונות אלו מזכירות את תכונות [[פנים (טופולוגיה)|הפנים]].
 
[[קטגוריה:טופולוגיה]]
920

עריכות