הבדלים בין גרסאות בדף "מרחב מכפלה"

הוסרו 2 בתים ,  לפני 13 שנים
מ
בוט החלפות: דוגמה; לינארי;
מ (תקלדה והרחבה קלה מאוד)
מ (בוט החלפות: דוגמה; לינארי;)
{{פירוש נוסף|נוכחי=מרחבי מכפלה בטופולוגיה|אחר=מרחבי מכפלה פנימית ב[[אלגברה ליניאריתלינארית]]|ראו=[[מרחב מכפלה פנימית]]}}
ב[[טופולוגיה]], '''מרחב מכפלה''' הוא [[מרחב טופולוגי]] שהתקבל ממרחבים קיימים על ידי [[מכפלה קרטזית]] שלהם, עם טופולוגיה המכונה "טופולוגיית המכפלה", המוגדרת כך שההטלות על הרכיבים הן [[פונקציה רציפה (טופולוגיה)|פונקציות רציפות]].
 
ניתן לאפיין בקלות יחסית את [[בסיס לטופולוגיה|תת הבסיס]] של טופולוגיה זו: תת-הבסיס מורכב מ[[מכפלה קרטזית]] של [[קבוצה פתוחה]] <math>\ V_{N} \subset X_{N}</math> בשאר המרחבים. כלומר, <math>\ U_{N} = V_{N} \times \prod_{n \ne N} X_n</math>. קבוצה מהצורה הזאת נקראת "קבוצה גלילית". הבסיס מתקבל על ידי לקיחת כל החיתוכים ה'''סופיים''' של קבוצות גליליות. כלומר, אם קבוצה היא פתוחה במרחב המכפלה אז ההטלה שלה לכל קוארדינטה היא פתוחה, וההטלה שלה ל[[כמעט כל (מתמטיקה)|כמעט כל]] המרחבים היא המרחב כולו. יש לציין כי כאשר המכפלה היא סופית, הגדרה זו מתלכדת עם ההגדרה ה"נאיבית" של טופולוגיית המכפלה, שבה תת הבסיס הוא קבוצות גליליות, ואם קבוצה היא פתוחה אז ההטלה שלה לכל מרחב היא פתוחה. כדאי לשים לב כי גרירה זו נכונה רק בכיוון אחד - גם אם כל ההטלות של קבוצה לכל המרחבים היא פתוחה, אין זה אומר שהקבוצה היא פתוחה.
 
כדאי לשים לב גם כי ההטלות הן תמיד העקתות פתוחות. כלומר, הטלה של כל קבוצה פתוחה לכל תת מרחב היא פתוחה. ההעתקות, לא חייבות להיות סגורות - אם הן היו סגורות אז קבוצות במרחב המכפלה היו פתוחות '''[[אם ורק אם]]''' ההטלה שלהן לכל רכיב הייתה פתוחה, וזה לא מתקיים. ניתן לקחת כדוגמאכדוגמה נגדית פשוטה את ההטלות של גרף פונקציה ההפכית: <math> \ \{(x,\frac{1}{x})|x\ne 0 \}\subset \mathbb{R}^2</math>. הגרף סגור ב <math>\mathbb{R}^2</math> (קל לראות כי המשלים שלו פתוח) אך ההטלה של גרף זה לכל אחד מהצירים הוא הישר כולו פרט לאפס, וזו כמובן אינה קבוצה סגורה.
 
==התכונה האוניברסלית של מרחבי מכפלה==
271,876

עריכות