החבורה הליניארית הכללית – הבדלי גרסאות

מ
אין תקציר עריכה
מ (בוט מוסיף: pt:Grupo linear geral)
מאין תקציר עריכה
ב[[תורת החבורות]], החבורה הלינארית הכללית ממעלה n מעל ה[[שדה (מבנה אלגברי)|שדה]] F, היא אוסף ה[[מטריצה הפיכה|מטריצות ההפיכות]] בעלות n שורות ועמודות שאיבריהן שייכים לשדה F, יחד עם פעולת [[כפל מטריצות]]. זוהי [[חבורה (מבנה אלגברי)|חבורה]] שהאיבר הנייטרלי שלה הוא מטריצת היחידה. זוהי אחת מהחבורות הבסיסיות הנחקרות בתורת החבורות. [[תת חבורה]] של החבורה הלינארית הכללית נקראת '''חבורה לינארית''' או בפשטות [[חבורת מטריצות]]. שיכון של חבורה מסוימת בתוך החבורה הלינארית הכללית נקרא [[הצגה לינארית]] של החבורה.
 
את החבורה הלינארית הכללית ניתן להגדיר באופן שקול כאוסף [[העתקה לינארית|ההעתקות הלינאריות]] ההפיכות מעל [[מרחב וקטורי]] V מממד n מעל השדה F. היות שכל המרחבים הווקטוריים בעלי ממד סופי שווה הם איזומורפיים, ברור שמבנה החבורה אינו תלוי במרחב הווקטורי שלפיו היא הוגדרה. למעשה, באופן הזה מגדירים את החבורה הלינארית הכללית כ[[חבורת אוטומורפיזמים|חבורת האוטומורפיזמים]] של V ב[[קטגוריה (מתמטיקה)|קטגוריה]] של מרחבים וקטוריים. כאשר משתמשים בהגדרה הראשונה מסמנים את החבורה בדרך כלל <math>\ GL_n (F)</math> או (GL(n,F, וכאשר משתמשים בהגדרה השנייה - <math>\ GL(V)</math>.
159,349

עריכות