הבדלים בין גרסאות בדף "עקביות (לוגיקה)"
אין תקציר עריכה
מ (משנה: en:Consistency) |
|||
כדי להוכיח שמערכת היא עקבית מספיק למצוא [[מודל (לוגיקה מתמטית)|מודל]] שמקיים את כל האקסיומות של המערכת. מודל עבור תורה A הנבנה במסגרת של תורה B מוכיח '''עקביות יחסית''' - אם B עקבית, אז גם A כזו. מודלים כאלו ידועים עבור [[גאומטריה|גאומטריות]] שונות (למשל, שתי הגרסאות ה[[גאומטריה לא אוקלידית|לא אוקלידיות]] של גאומטרית המישור הן עקביות ביחס לגאומטרית המישור האוקלידית), וגם עבור מערכות אקסיומטיות שונות ל[[תורת הקבוצות האקסיומטית|תורת הקבוצות]].
לכל מערכת אקסיומות עקבית יש מודל (משפט השלמות של גודל 1930) . עם זאת, ישנן
== ראו גם ==
|