משפט החיתוך של קנטור – הבדלי גרסאות

אין תקציר עריכה
אין תקציר עריכה
אין תקציר עריכה
כעת, מכיוון ש<math>\!\,x_n</math> סדרת קושי, הרי שלכל <math>\!\,\epsilon>0</math> קיים <math>\!\,N</math> כך שלכל <math>\!\,m\ge N</math> מתקיים <math>\!\,d(x_N,x_m)<\epsilon</math>. לכן <math>\!\,diam \left\{x_k|k\ge N\right\}<\epsilon</math>, ולכן <math>\!\,diam A_n=diam Cl\left(\left\{x_k|k\ge N\right\}\right)<\epsilon</math>, וקיבלנו <math>\!\,\lim_{n\rarr\infty}diam A_n=0</math>.
 
כעת הראינו כי הסדרה <math>\!\,A_n</math> מקיימת את כל התכונות הדרושות, ולכן <math>\!\,\bigcap_n A_n\ne\emptyset</math>. יהא <math>\!\,x\isin\bigcap_n A_n</math>, אז לכל <math>\!\,n</math> מתקיים <math>\!\,x\isin A_n</math>, ולכן <math>\!\,d(x,x_n)\le diam A_n\rarr 0</math>, כלומר <math>\!\,x_n\rarr x</math>, והראינו שהסדרתשסדרת קושי שלנוהנ"ל מתכנסת.
 
[[קטגוריה:מרחבים מטריים]]
משתמש אלמוני