מספר גל – הבדלי גרסאות

תוכן שנמחק תוכן שנוסף
תרגום מויקי אנגלית, בעבודה
 
אין תקציר עריכה
שורה 2:
'''מספר גל''', ברוב [[מדעי הטבע]], הוא תכונה של [[גל]] הקשורה ב[[יחס הופכי]] ל[[אורך גל|אורך הגל]]. ביחידות [[SI]] מספר הגל נמדד ב[[מטר]]ים הופכיים (m<sup>&minus;1</sup>). מספר גל הוא האנאלוג המרחבי של [[תדירות]]; כלומר, הוא מהווה מידה למספר היחידות החוזרות של גל מתקדם (מספר הפעמים בהן יש לגל אותה ה[[פאזה]] ביחידת מרחב).
 
הפעלת [[התמרת פורייה]] על נתונים כפונקציה של זמן מפיקה את [[ספקטרום התדירויות]]; הפעלה על נתונים כפונקציה של מקום מפיקה את ספקטרום מספר הגל. ההגדרה המדויקת תלויה בתחום המחקר.
<!-- '''Wavenumber''' in most [[physics|physical]] sciences is a [[wave]] property [[inverse (mathematics)|inversely]] related to [[wavelength]], having [[SI units]] of reciprocal [[metre|meters]] (m<sup>&minus;1</sup>). Wavenumber is the [[space|spatial]] analog of [[frequency]], that is, it is the [[measurement]] of the number of repeating units of a propagating wave (the number of times a wave has the same [[phase (waves)|phase]]) per unit of space. Application of a [[Fourier transform]]ation on data as a function of time yields a [[frequency spectrum]]; application on data as a function of position yields a wavenumber spectrum. The exact definition varies depending on the field of study.
 
==ספקטרוסקופיה==
==In spectroscopy==
ב[[ספקטרוסקופיה]], מספר הגל <math>\tilde{\nu}</math> של [[קרינה אלקטרומגנטית]] מוגדר כ:
 
In [[spectroscopy]], the wavenumber <math>\tilde{\nu}</math> of [[electromagnetic radiation]] is defined as
:<math> \tilde{\nu} = 1/\lambda </math>
כאשר <math>\lambda</math> היא [[אורך גל|אורך הגל]] של הקרינה ב[[ריק]].
where <math>\lambda</math> is the [[wavelength]] of the radiation in a vacuum. The wavenumber has [[Dimensional analysis|dimensions]] of inverse length and [[SI units]] of reciprocal meters (m<sup>&minus;1</sup>). Commonly, the quantity is expressed in the [[cgs unit]] cm<sup>&minus;1</sup>, pronounced as ''reciprocal centimeter'' or ''inverse centimeter'', or ''retemitnec'' by some, and also formerly called the ''kayser'', after [[Heinrich Kayser]], . The historical reason for using this quantity is that it proved to be convenient in the analysis of atomic spectra. Wavenumbers were first used in the calculations of [[Janne Rydberg]] in the 1880s. The [[Rydberg-Ritz combination principle]] of 1908 was also formulated in terms of wavenumbers. A few years later spectral lines could be understood in [[Quantum mechanics|quantum theory]] as differences between energy levels, energy being proportional to wavenumber, or frequency. However, spectroscopic data kept being tabulated in terms of wavenumber rather than frequency or energy, since spectroscopic instruments are typically calibrated in terms of wavelength, independent of the value for the [[speed of light]] or [[Planck's constant]].
 
<!--
 
where <math>\lambda</math> is the [[wavelength]] of the radiation in a vacuum. The wavenumber has [[Dimensional analysis|dimensions]] of inverse length and [[SI units]] of reciprocal meters (m<sup>&minus;1</sup>). Commonly, the quantity is expressed in the [[cgs unit]] cm<sup>&minus;1</sup>, pronounced as ''reciprocal centimeter'' or ''inverse centimeter'', or ''retemitnec'' by some, and also formerly called the ''kayser'', after [[Heinrich Kayser]], . The historical reason for using this quantity is that it proved to be convenient in the analysis of atomic spectra. Wavenumbers were first used in the calculations of [[Janne Rydberg]] in the 1880s. The [[Rydberg-Ritz combination principle]] of 1908 was also formulated in terms of wavenumbers. A few years later spectral lines could be understood in [[Quantum mechanics|quantum theory]] as differences between energy levels, energy being proportional to wavenumber, or frequency. However, spectroscopic data kept being tabulated in terms of wavenumber rather than frequency or energy, since spectroscopic instruments are typically calibrated in terms of wavelength, independent of the value for the [[speed of light]] or [[Planck's constant]].
 
A wavenumber can be converted into quantum-mechanical energy <math>E</math> in J or regular frequency <math>\nu</math> in Hz according to