הבדלים בין גרסאות בדף "חילוק באפס"

נוספו 280 בתים ,  לפני 9 שנים
מ
אין תקציר עריכה
מ
{{בעבודה}}
[[קובץ:Hyperbola one over x.svg|ממוזער|300px|[[גרף של פונקציה|גרף הפונקציה]] <math>\textstyle \frac{ 1}{ x}</math>. כאשר x שואף לאפס הפונקציה שואפת לאינסוף, והפונקציה אינה מוגדרת באפס.]]
'''חלוקה באפס''' היא ה[[פעולה בינארית|פעולה]] ה[[מתמטיקה|מתמטית]] של [[חילוק|חלוקת]] [[מספר]] במספר [[0 (מספר)|0]], ותוצאתה לרוב אינה מוגדרת. את הפעולה ניתן לרשום בצורה <math>\textstyle\frac{a}{0}</math>.
 
מקרה ידוע ב[[חשבון אינפיניטסימלי]] הוא של [[פונקציה ממשית|פונקציות]] שאינן מוגדרות בנקודה בגלל חלוקה באפס. לדוגמה הפונקציה <math>\ f(x)=\frac{x^2-1}{x-1}</math>. לכל <math>\ x</math> שאינו 1 פונקציה זו היא פשוט ה[[פונקציה לינארית|פונקציה הלינארית]] <math>\ f(x)=x+1</math>. אולם בנקודה <math>\ x=1</math> מתקבלת חלוקה באפס ולכן הפונקציה לא מוגדרת. במקרה הזה נקראת הנקודה [[נקודת אי רציפות|נקודת אי רציפות סליקה]], שכן ניתן להתעלם מהחלוקה באפס ולהגדיר <math>\ f(1)=2</math> ומתקבלת [[פונקציה רציפה]]. מקרה חשוב שכזה הוא בפונקציה <math>\ f(x)=\frac{\sin(x)}{x}</math> בנקודה <math>\ x=0</math>. [[הגבול של sin(x)/x|ניתן להוכיח]] כי נקודה זו היא אי רציפות סליקה וניתן לתקן אותה על ידי ההגדרה <math>\ f(0)=1</math>. לעובדה זו יש חשיבות מכרעת במציאת ה[[נגזרת|נגזרות]] של ה[[פונקציה טריגונומטרית|פונקציות הטריגונומטריות]] וב[[קירוב זוויות קטנות]].
 
לא תמיד חלוקה באפס בפונקציה תתן נקודת אי רציפות סליקה. בנקודות בהן הפונקציה היא מהצורה <math>\textstyle \frac{ a}{ 0}</math> או <math>\textstyle \frac{ \infty}{ 0}</math> (כאשר המונה והמכנה מייצגים את ה[[גבול של פונקציה|גבול]] של הפונקציה במונה והפונקציה במכנה בהתאמה; a שונה מאפס) נקודת אי הרציפות תהיה מ[[נקודת אי רציפות|הסוג השני]] והפונקציה תשאף בנקודות אלו לאינסוף. רק במקרה <math>\textstyle \frac{ 0}{ 0}</math>, אז תתכן כל תוצאה אפשרית לגבול. במקרה כזה שימושי [[כלל לופיטל]].
 
==ראו גם==