במתמטיקה, בעיה פתוחה היא לפעמים השערה, כלומר טענה שטרם נמצאה לה הוכחה או הפרכה, ולפעמים שאלה שאין עליה השערה מבוססת דיה. לעיתים הבעיה בעלת חשיבות רבה, ועלולה להעסיק מדענים בתחומים שונים במשך שנים רבות (לעיתים מאות שנים) בחיפוש אחר פתרונה.

השערת הרצף מדגימה גורל אפשרי לבעיה פתוחה, גורל שאפשרות קיומו הוכחה במשפטי האי-שלמות של גדל: לאחר עשרות שנים שבהן הייתה בגדר בעיה פתוחה, הוכח כי היא אינה תלויה באקסיומות המקובלות של תורת הקבוצות, ולכן ניתן לקבוע שהיא נכונה ולחלופין לקבוע שהיא אינה נכונה.

דוגמאות

עריכה

דוגמאות נודעות לבעיות פתוחות שנפתרו לבסוף, הן המשפט האחרון של פרמה, שזכה להוכחה על ידי אנדרו ויילס כ-350 שנה לאחר שהועלה על ידי פייר דה פרמה, והבעיות הגאומטריות של ימי קדם, שהופרכו כאלפיים שנה לאחר שהוצגו. רשימה מפורסמת של 23 בעיות פתוחות היא רשימת 23 הבעיות של הילברט, שהוצגה בשנת 1900 על ידי המתמטיקאי הגרמני דויד הילברט, ומרבית הבעיות שנכללו בה נפתרו, בצורה זו או אחרת, במהלך המאה ה-20. דוגמאות נוספות לבעיות פתוחות ש'נסגרו' הם: השערת פואנקרה, ומשפט ארבעת הצבעים.

בעיות פתוחות רבות ממשיכות להתקיים, ובין המפורסמות שבהן ניתן למנות את השערת גולדבך, שאלת P=NP, השערת רימן והשערת המספרים הראשוניים התאומים. מכון קליי למתמטיקה הכריז בשנת 2000 על בעיות המילניום של מכון קליי - פרס בסך מיליון דולר, שיינתן לראשון שיצליח לפתור אחת משבע בעיות פתוחות מרכזיות במתמטיקה. הבעיה הפתוחה העתיקה ביותר ששרדה עד היום, היא כנראה שאלת קיומם של מספרים מושלמים אי-זוגיים, הבעיה רמוזה ביסודות שכתב המתמטיקאי אוקלידס בראשית המאה השלישית לפנה"ס.

באתר MathWorld מופיעה רשימה של 247 בעיות פתוחות חשובות במתמטיקה - ראו קישור להלן.

קישורים חיצוניים

עריכה
  מדיה וקבצים בנושא בעיה פתוחה בוויקישיתוף