מידת רדון
בערך זה |
בתורת המידה, מידת רדון היא מידה סופית-מקומית ורגולרית. לאוסף מידות רדון חשיבות מיוחדת גם באנליזה פונקציונלית, לאור משפט ההצגה של ריס. המשפט קובע קשר חד-חד-ערכי בין אוסף מידות רדון לבין אוסף הפונקציונלים הליניאריים החיוביים מעל למרחב הפונקציות הרציפות ובעלות תומך קומפקטי.
הגדרה: יהי מרחב טופולוגי ותהי סיגמא אלגברת בורל (כלומר, זו הנוצרת על ידי הטופולוגיה). מידה (חיובית) על נקראת מידת רדון, אם מתקיימים שני התנאים הבאים:
- סופיות מקומית: לכל קבוצה קומפקטית מתקיים .
- רגולריות: לכל קבוצה מדידה מתקיימת הן רגולריות חיצונית הן רגולריות פנימית, כלומר: