מרחב מכפלה – הבדלי גרסאות

תוכן שנמחק תוכן שנוסף
Legobot (שיחה | תרומות)
מ בוט: מעביר קישורי בינויקי לויקינתונים - d:q1070472
אין תקציר עריכה
שורה 6:
: <math>X=\prod_{n \in \Lambda} X_n</math>.
 
עבור כל קוארדינטהקואורדינטה <math>\!\, n</math> קיימת פונקציית ההטלה <math>\!\, p_n:X\rarr X_n</math> שלכל נקודה במרחב המכפלה מחזירה את ערך הקוארדינטההקואורדינטה <math>\!\, n</math> שלה. טופולוגיתטופולוגיית המכפלה על המרחב הזה תוגדר בתור הטופולוגיה החלשה ביותר (כלומר, בעלת המספר הקטן ביותר של קבוצות פתוחות) שעבורה כל ההטלות הן [[רציפות (טופולוגיה)|פונקציות רציפות]].
 
ניתן לאפיין בקלות יחסית [[בסיס לטופולוגיה|תת -בסיס]] של טופולוגיה זו: תתהתת-הבסיסבסיס מורכב מ[[מכפלה קרטזית]] של [[קבוצה פתוחה]] <math>\ V_{N} \subset X_{N}</math> בשאר המרחבים. כלומר, <math>\ U_{N} = V_{N} \times \prod_{n \ne N} X_n</math>. קבוצה מהצורה הזאת נקראת "קבוצה גלילית". הבסיס מתקבל על ידי לקיחת כל החיתוכים ה'''סופיים''' של קבוצות גליליות. כלומר, אם קבוצה היא פתוחה במרחב המכפלה אז ההטלה שלה לכל קוארדינטה היא פתוחה, וההטלה שלה ל[[כמעט כל (מתמטיקה)|כמעט כל]] המרחבים היא המרחב כולו. יש לציין כי כאשר המכפלה היא סופית, הגדרה זו מתלכדת עם ההגדרה ה"נאיבית" של טופולוגיית המכפלה, שבה תת-הבסיס הוא קבוצות גליליות, ואם קבוצה היא פתוחה אז ההטלה שלה לכל מרחב היא פתוחה. כדאי לשים לב כי גרירה זו נכונה רק בכיוון אחד - גם אם כל ההטלות של קבוצה לכל המרחבים היא פתוחה, אין זה אומר שהקבוצה היא פתוחה.
 
כדאי לשים לב גם כי ההטלות הן תמיד העתקות פתוחות. כלומר, הטלה של כל קבוצה פתוחה לכל תת-מרחב היא פתוחה. ההעתקות, לא חייבות להיות סגורות - אם הן היו סגורות אז קבוצות במרחב המכפלה היו פתוחות '''[[אם ורק אם]]''' ההטלה שלהן לכל רכיב הייתה פתוחה, וזה לא מתקיים. ניתן לקחת כ[[דוגמה נגדית]] פשוטה את ההטלות של גרף פונקציה ההפכית: <math> \ \{(x,\frac{1}{x})|x\ne 0 \}\subset \mathbb{R}^2</math>. הגרף סגור ב <math>\mathbb{R}^2</math> (קל לראות כי המשלים שלו פתוח) אך ההטלה של גרף זה לכל אחד מהצירים הוא הישר כולו פרט לאפס, וזו כמובן אינה קבוצה סגורה.