משפט פוביני – הבדלי גרסאות

נוספו 1,411 בתים ,  לפני 6 שנים
אין תקציר עריכה
(הוספת ההוכחה)
 
לא קשה לראות שבמרחב זה, קבוצת האלכסון <math> \{ (x,x) | x \in [0,1] \}</math> היא בעלת מידה אפס אם מבצעים אינטגרציה תחילה לפי העותק הראשון, ולעומת זאת היא בעלת מידה 1 אם מבצעים אינטגרציה תחילה לפי העותק השני.
 
==הוכחה==
 
ההוכחה הנפוצה למשפט עושה שימוש ב[[משפט המחלקה המונוטונית]]. מבנה ההוכחה הוא כדלהלן: (1) תחילה מוכיחים את המשפט עבור פונקציות מדידות מסוג מסוים במרחבי מידה סופיים, (2) מכלילים את המשפט למרחבים סיגמא-סופיים, (3) מכלילים את המשפט לפונקציות מדידות כלליות.
 
# נניח כי שני המרחבים הם מרחבי מידה סופיים. בהינתן קבוצה <math>E \in \mathcal{M} \times \mathcal{N}</math>, לכל <math>y \in Y</math> נגדיר <math>E^y = \left\{ x \in X | (x,y) \in E \right\}</math>. נגדיר פונקציה <math>f:Y \to [0,\infty)</math> על ידי <math>f(y) = \mu(E^y)</math>.
תהי <math>\mathcal{A}</math> האלגברה הנוצרת על ידי הקבוצות <math>A \times B</math> עבור <math>A \in \mathcal{M}, B \in \mathcal{N}</math>, ותהי <math>\mathcal{C}</math> אוסף כל הקבוצות המדידות שעבורן מתקיים המשפט. נראה כי <math>\mathcal{C}</math> היא [[מחלקה מונוטונית]] וכי <math>\mathcal{A} \subset \mathcal{C}</math>, ומ[[משפט המחלקה המונוטונית]] נוכל להסיק כי <math>\mathcal{M} \otimes \mathcal{N} = \sigma(\mathcal{A}) \subset \mathcal{C}</math>, כנדרש.
 
==הערות שוליים==
משתמש אלמוני