משפט המספרים הראשוניים – הבדלי גרסאות

תוכן שנמחק תוכן שנוסף
אין תקציר עריכה
שורה 7:
== פונקציית המספרים הראשוניים וקירובים שונים ==
 
שיטתו של רימן, שעליה בנויות כל ההוכחות האנליטיות למשפט המספרים הראשוניים, מוליכה באופן טבעי לקירוב <math>\ \pi(x) \sim \operatorname{Li}(x)</math>, כאשר <math>\ \operatorname{Li}(x)</math> היא [[פונקציית האינטגרל הלוגריתמי |פונקציית האינטגרל הלוגריתמי של אוילר ]], <math>\ \operatorname{Li}(x) = \int_2^x \frac{1}{\ln t} dt</math>. מבחינת [[ניתוח אסימפטוטי|אסימפטוטיקה]]<sup>{{אנ|Asymptotic analysis}}</sup> מסדר ראשון אין הבדל בין הקירוב הזה למנה <math>\ \frac{x}{\ln x}</math>, משום שהיחס בין שתיהן שואף ל-1. עם זאת, גורם השגיאה במשפט המספרים הראשוניים הוא מוקד עניין מרכזי בתורת המספרים (ראו [[השערת רימן]]), והקירוב באמצעות האינטגרל הלוגריתמי ההפוך טוב בהרבה.
 
רימן וגאוס האמינו שלכל ערך גדול מספיק של x מתקיים <math>\ \pi(x) < \operatorname{Li}(x)</math>