תת-חבורת הקומוטטורים – הבדלי גרסאות

מספי עקרוני כדי לעבור לפתיח.
(מספי עקרוני כדי לעבור לפתיח.)
ב[[מתמטיקה]] ובמיוחד ב[[אלגברה מופשטת]], '''תת חבורת הקומוטטורים''' <math>\ G'</math> של [[חבורה (מבנה אלגברי)|חבורה]] <math>\ G</math> היא התת-חבורה ה[[יוצרים של חבורה|נוצרת]] על ידי כל ה[[קומוטטור|קומוטטורים]] של איברים בחבורה. תת-חבורת הקומוטטורים מודדת עד כמה החבורה היא [[חבורה אבלית|אבלית]]: היא [[טריוויאלי (מתמטיקה)|טריוויאלית]] אם ורק אם החבורה אבלית, ובאופן כללי יותר, ה[[חבורת מנה|מנה]] <math>\ G/G'</math> היא המנה האבלית הגדולה ביותר של G.
 
ידועלא שכלכל איבר בתת-חבורת הקומוטטורים הוא קומוטטור, אבל הוא כן בהכרח "קומוטטור ארוך", מןכלומר מכפלת קומוטטורים הצורהמהצורה <math>\ a_1 \dots a_n a_1^{-1} \dots a_n^{-1}</math>.
 
==הגדרה==
 
מכיוון ש[[הומומורפיזם (אלגברה)#הומומורפיזם בין חבורות|הומומורפיזם]] <math>\ f : G \to H</math> מעביר קומוטטור לקומוטטור, מתקיימת ההכלה <math>\ f(G')\subset H'</math>. עבור חבורות מנה, ניתן לחשב ש- <math>\ [A/N,B/N]=[A,B]N/N</math> ובפרט <math>\ (G/N)'=G'N/N</math>.
 
ידוע שכל איבר בתת-חבורת הקומוטטורים הוא "קומוטטור ארוך", מן הצורה <math>\ a_1 \dots a_n a_1^{-1} \dots a_n^{-1}</math>.
 
== הכללות ==