סופרנובה G1.9+0.3 – הבדלי גרסאות

תוכן שנמחק תוכן שנוסף
חגי אדלר (שיחה | תרומות)
אין תקציר עריכה
שורה 1:
[[Image:Sun and VY Canis Majoris.svg|thumb|300px|right|Size comparison between the Sun and [[VY Canis Majoris]], a hypergiant which is [[list of largest known stars|the largest known star]].]]
[[תמונה:Supernova remnant G1.9+0.3.jpg|ממוזער|270px|תמונה מורכבת של הסופרנובה G1.9+0.3 - שילוב צילומים מ-1985 (רדיו - כחול) ומ-2008 (רנטגן - כתום). ניתן לראות את ההבדל בגודל, לפיו חושבה מהירות תנועת החומר שנזרק בסופרנובה]]
A '''hypergiant''' ([[stellar classification#Yerkes spectral classification|luminosity class]] '''0''') is a [[star]] with a tremendous [[mass]] and [[luminosity]], showing signs of a very high rate of mass loss. Because of its size and mass, it is a very interesting object for scientists studying the upper mass and luminosity limit for stars in general.
 
'''G1.9+0.3''' היא שריד [[סופרנובה|הסופרנובה]] המוכר הצעיר ביותר בגלקסית [[שביל החלב]]. שרידי הסופרנובה התגלו לאחרונה ע"י שילוב נתונים [[טלסקופ החלל צ'נדרה]] ו[[המערך הגדול מאוד]] (VLA). מעריכים כי הסופרנובה עצמה התרחשה לפני כ-140 שנים, יחסית לזמן [[כדור הארץ]], כאשר העצם עצמו נמצא במרחק של כ-25,000 [[שנת אור|שנות אור]] מאיתנו. קודם לגילוי זה, שריד הסופרנובה הצעיר ביותר היה [[קסיאופיאה A]], אשר התרחשה לפני 330 שנה.
 
==גילויCharacteristics==
{{star nav}}
G1.9+0.3 נצפתה לראשונה ב-[[1985]], כמקור [[גלי רדיו|רדיו]] בהיר בתוך [[גלקסיה|גלקסית]] [[שביל החלב]], באמצעות המערך הגדול מאוד (VLA). ב-[[2007]], המקור, שנחשד להיות שריד סופרנובה, צולם ע"י טלסקופ החלל צ'נדרה והתוצאות הושוו לצילומים מ-1985. הבדלי הגודל אפשרו ל[[אסטרונום|אסטרונומים]] לחשב כי הסופרנובה ארעה סביב שנת [[1868]]. ב-[[2008]], תצפיות נוספות בעזרת ה-VLA אישרו ששרידי הסופרנובה ממשיכים להתפשט במהירות גבוהה ואפשרו לחשב את המהירות - כ-56 מליון [[קמ"ש]] - 5% מ[[מהירות האור]].
The word “hypergiant” is commonly used as a loose term for the most massive stars found, even though there are more precise definitions. In 1956, the astronomers Feast and Thackeray used the term super-supergiant (later changed into hypergiant) for stars with an [[absolute magnitude]] brighter than M<sub>V</sub> = -7. In 1971, Keenan suggested that the term would only be used for [[supergiant|supergiants]] showing at least one broad emission component in Hα, indicating an extended stellar atmosphere or a relatively large mass loss rate. The Keenan criterion is the one most commonly used by scientists today. <ref>{{cite journal| url=http://adsabs.harvard.edu/abs/1998A%26ARv...8..145D| title = The yellow hypergiants |author= C. de Jager| year=1998| journal = Astronomy and Astrophysics Review| volume = 8| pages= 145-180}}</ref> This means that a hypergiant doesn’t necessarily have to be more massive than a similar supergiant. Still, the most massive stars are considered to be hypergiants, and can have masses ranging up to 100-150 solar masses.
 
Hypergiants are very luminous stars, up to millions of [[solar luminosity|solar luminosities]], and have temperatures varying widely between 3,500 [[Kelvin|K]] and 35,000 K. Almost all hypergiants exhibit variations in luminosity over time due to instabilities within their interiors.
ארוע הסופרנובה עצמו לא תועד ע"י אסטרונומים בזמן התרחשותה, מכיוון שהיא ממוקמת קרוב למרכז הגלקסיה ומוסתרת ע"י ענני אבק. רק תחילת התצפיות בגלי רדיו ו[[קרינת רנטגן|רנטגן]] אפשרו לאסטרונומים לעבור מכשול זה ולהתחיל לחקור את המתרחש במרכז הגלקסיה.
 
Because of their high masses, the lifetime of a hypergiant is very short in astronomical timescales, only a few million years compared to around 10 billion years for stars like the [[Sun]]. Because of this, hypergiants are extremely rare and only a handful are known today.
==הודעה==
הגילוי פורסם ב-[[14 במאי]], 2008, במסיבת עיתונאים של [[נאס"א]]. בימים לפני ההודעה הרשמית, בנאס"א רק רמזו כי הם הולכים להודיע על גילוי עצם בגלקסיה שלנו שאסטרונומים רדפו אחריו במשך יותר מ-50 שנה.
 
Hypergiants should not be confused with luminous blue variables. A hypergiant is classified as such because of its size and mass loss rate, whereas a luminous blue variable is thought to be a massive blue supergiant going through an evolutionary phase where it loses a lot of mass.
==קישורים חיצוניים==
* [http://chandra.harvard.edu/photo/2008/g19/ הודעה על הגילוי באתר צ'נדרה]
 
[[קטגוריה:אסטרונומיה]]
[[קטגוריה:סופרנובות|G1.9+0.3, סופרנובה]]
 
==The stability of hypergiants==
[[en:Supernova remnant G1.9+0.3]]
As luminosity of stars increases exponentially with mass, the luminosity of hypergiants often lies very close to the [[Eddington limit]] which, simply put, is the luminosity where the gravitational pressure inwards equals the continuum radiation pressure outwards. This means that the radiative flux passing through the [[photosphere]] of a hypergiant may be very close to how much the photosphere can handle. Above the Eddington limit, the star is supposed to generate so much radiation that parts of its outer layers are thrown off in massive outbursts, effectively restricting the star from shining at higher luminosities for longer periods.
[[fr:SNR 1.9+0.3]]
 
[[pt:G1.9+0.3 (supernova)]]
A consequence of passing the Eddington limit is thought to be the initiation of a continuum driven wind <ref>{{cite journal| url=http://adsabs.harvard.edu/abs/2008AIPC..990..250V| title = Continuum driven winds from super-Eddington stars. A tale of two limits |author= A. J. van Marle|coauthors = S. P. Owocki; N. J. Shaviv| year=2008| journal = AIP Conference Proceedings| volume = 990 | pages= 250-253}}</ref> (from processes such as electron scattering, free-free and bound-free interaction), with extremely high mass loss rates up to 10 000 times stronger than the strongest line-driven [[stellar wind|stellar winds]] of sub-Eddington objects. As very few stars are thought to ever pass the Eddington limit, the continuum driven stellar winds are extremely rare and are mostly results of theoretical predictions.
 
A good candidate for hosting a continuum driven wind is [[Eta Carinae|η Carinae]], one of the most massive and luminous stars ever observed. However, even with a mass of around 130 solar masses and a luminosity four million times higher than the Sun, η Carinae is thought to only occasionally reach super-Eddington luminosities. The last time might have been a series of outbursts in 1840-1860, reaching mass loss rates much higher than any of the more well known stellar winds can explain. <ref>{{cite journal| url=http://adsabs.harvard.edu/abs/2004ApJ...616..525O| title = A porosity-length formalism for photon-tiring limited mass losss from stars above the Eddington limit |author= S. P. Owocki|coauthors = K. G. Gayley; N. J. Shaviv| year=2004| journal = Astrophysical Journal| volume = 616| pages= 525-541}} </ref>
 
As opposed to line driven stellar winds, continuum driving does not require the presence of metallic atoms in the photosphere. This is important, since most massive stars also are very metal poor, which means that we need an effect that works independently of the metallicity. In the same line of reasoning, the continuum driving may also contribute to an upper mass limit even for the [[Population III|first generation of stars]] right after the [[Big Bang]], which did not contain any metals at all.
 
Another theory to explain the massive outbursts of for example η Carinae is the idea of a deeply situated hydrodynamic explosion, blasting off parts of the star’s outer layers. The idea is that the star even at luminosities below the Eddington limit would have insufficient heat convection in the inner layers, resulting in a density inversion potentially leading to a massive explosion. The theory has however not been explored very much, and it is uncertain whether this really can happen. <ref>{{cite journal| url=http://adsabs.harvard.edu/abs/2006ApJ...645L..45S| title = On the role of continuum driven eruptions in the evolution of very massive stars and population III stars |author= N. Smith|coauthors = S. P. Owocki| year=2006| journal = Astrophysical Journal| volume = 645|pages = L45-L48}} </ref>
 
 
== Known hypergiants ==
Hypergiants are difficult to study due to their rarity. There appears to be an upper luminosity limit for the coolest hypergiants (those colored yellow and red): none of them are brighter than around [[bolometric magnitude]] -9.5, which corresponds to roughly 500,000 times Sun's luminosity. The reasons for that are currently unknown.
 
=== Luminous blue variables ===
 
Most [[luminous blue variable]]s are classified as hypergiants, and indeed they are the most luminous stars known:
* [[P Cygni]], in the northern constellation of [[Cygnus (constellation)|Cygnus]].
* [[S Doradus]], in a nearby [[galaxy]] called the [[Large Magellanic Cloud]], in the southern constellation of [[Dorado (constellation)|Dorado]]. This galaxy was also the location of [[Supernova 1987A]].
* [[Eta Carinae]], inside the Keyhole Nebula ([[NGC 3372]]) in the southern constellation of [[Carina (constellation)|Carina]]. Eta Carinae is extremely massive, possibly as much as 120 to 150 times the mass of the Sun, and is four to five million times as luminous.
* The [[Pistol Star]], near the center of the Milky Way, in the constellation of [[Sagittarius (constellation)|Sagittarius]]. The Pistol Star is possibly as much as 150 times more massive than the Sun, and is about 1.7 million times more luminous.
* Several stars in the cluster [[1806-20]], on the other side of the Milky Way galaxy. One such star, [[LBV 1806-20]], is the most luminous star known, from 2 to 40 million times as luminous as the Sun, and also one of the most massive.
 
=== Blue hypergiants ===
 
*[[Zeta-1 Scorpii]], the brightest star of the OB association Scorpius OB1 and a [[luminous blue variable|LBV]] candidate.
*[[MWC 314]], in the constellation of [[Aquila_(constellation)|Aquila]], another LBV candidate.
*[[HD 169454]], in [[Scutum_(constellation)|Scutum]]
*[[BD -14° 5037]] near of the latter.
*[[Cygnus OB2-12]], which some authors consider an [[luminous blue variable|LBV]].
 
=== Yellow hypergiants ===
[[Yellow hypergiant]]s form an extremely rare class of stars, with only seven being known in our [[galaxy]]:
* [[Rho Cassiopeiae]], in the northern constellation of [[Cassiopeia (constellation)|Cassiopeia]], is about 500,000 times as luminous as the Sun.
* [[HR 8752]]
* [[IRC+10420]]
* Also see stars in [[Westerlund 1]].
 
=== Red hypergiants ===
*[[RW Cephei]]
*[[NML Cygni]]
*[[VX Sagittarii]]
*[[S Persei]]
*[[VY Canis Majoris]] has the largest diameter of any known star, 1800 to 2100 times that of the Sun.
 
 
== See also ==
* [[Supergiant]]s
* [[Hypernova]]
* [[Eddington limit]]
 
 
[[en:Hypergiant]]
[[bg:Хипергигант]]
[[de:Hyperriese]]
[[et:Hüperhiid]]
[[el:Υπεργίγαντας αστέρας]]
[[es:Hipergigante]]
[[fr:Hypergéante]]
[[ko:극대거성]]
[[it:Stella ipergigante]]
[[lt:Hipermilžinė]]
[[nl:Hyperreus]]
[[pl:Hiperolbrzym]]
[[pt:Estrela hipergigante]]
[[ru:Гипергигант]]
[[sk:Hyperobor]]
[[sl:Hiperorjakinja]]
[[fi:Hyperjättiläinen]]
[[tr:Üstündev]]